半桥谐振LLC+CoolMOS开关管工作原理和作用

电子说

1.3w人已加入

描述

威廉希尔官方网站 结构,半桥结构如图所示,它是两个功率开关器件(如MOS管)以图腾柱的形式相连接,以中间点作为输出,提供方波信号。这种结构在 PWM 电机控制、DC-AC逆变、电子镇流器等场合有着广泛的应用。

半桥结构如图所示,它是两个功率开关器件(如MOS管)以图腾柱的形式相连接,以中间点作为输出,提供方波信号。

这种结构在 PWM 电机控制、DC-AC逆变、电子镇流器等场合有着广泛的应用。上下两个管子由反相的信号控制,当一个功率管开时,另一个关断,这样在输出点OUT就得到电压从0到VHV的脉冲信号。

由于开关延时的存在,当其中的一个管子栅极信号变为低时,它并不会立刻关断,因此一个管子必须在另一个管子关断后一定时间方可开启,以防止同时开启造成的电流穿通,这个时间称为死区时间,如图中Td所示。下图为半桥威廉希尔官方网站 结构及高低侧驱动信号。

半桥威廉希尔官方网站 相较全桥威廉希尔官方网站 具有成本低、控制相对容易的优势,但是由于半桥威廉希尔官方网站 的变压器输入电压仅为约正负(1/2)Vin,相较全桥威廉希尔官方网站 当输入电压输出电压相同时,传递相同的功率半桥威廉希尔官方网站 原边开关管承受的电流应力要比全桥威廉希尔官方网站 大得多(约为两倍),半桥威廉希尔官方网站 一般应用于中小功率(1KW以下)场合。

半桥谐振

LLC与CoolMOS概述

近来,LLC拓扑以其高效,高功率密度受到广大电源设计工程师的青睐,但是这种软开关拓扑对MOSFET 的要求却超过了以往任何一种硬开关拓扑。特别是在电源启机,动态负载,过载,短路等情况下。

CoolMOS 以其快恢复体二极管 ,低Qg 和Coss能够完全满足这些需求并大大提升电源系统的可靠性。

长期以来, 提升电源系统功率密度,效率以及系统的可靠性一直是研发人员面临的重大课题。提升电源的开关频率是其中的方法之一, 但是频率的提升会影响到功率器件的开关损耗,使得提升频率对硬开关拓扑来说效果并不十分明显,硬开关拓扑已经达到了它的设计瓶颈。

而此时,软开关拓扑,如LLC拓扑以其独具的特点受到广大设计工程师的追捧。但是这种拓扑却对功率器件提出了新的要求。

LLC 威廉希尔官方网站 的特点

LLC 拓扑的以下特点使其广泛的应用于各种开关电源之中:

1. LLC 转换器可以在宽负载范围内实现零电压开关。

2. 能够在输入电压和负载大范围变化的情况下调节输出,同时开关频率变化相对很小。

3. 采用频率控制,上下管的占空比都为50%.

4. 减小次级同步整流MOSFET的电压应力 ,可以采用更低的电压MOSFET从而减少成本。

5. 无需输出电感 ,可以进一步降低系统成本。

6. 采用更低电压的同步整流MOSFET, 可以进一步提升效率。

LLC 威廉希尔官方网站 的基本结构以及工作原理

图1和图2分别给出了LLC谐振变换器的典型线路和工作波形。如图1所示LLC转换器包括两个功率MOSFET(Q1和Q2),其占空比都为0.5;谐振电容 Cr,副边匝数相等的中心抽头变压器Tr,等效电感Lr,励磁电感Lm,全波整流二极管D1和D2以及输出电容Co。

半桥谐振

图1 LLC谐振变换器的典型线路

半桥谐振

图2 LLC谐振变换器的工作波形

而LLC有两个谐振频率,Cr, Lr 决定谐振频率fr1; 而Lm, Lr, Cr决定谐振频率fr2。

系统的负载变化时会造成系统工作频率的变化,当负载增加时, MOSFET开关频率减小, 当负载减小时,开关频率增大。

半桥谐振

01

LLC谐振变换器的工作时序

LLC变换器的稳态工作原理如下。

1)〔t1,t2〕

Q1关断,Q2开通,电感Lr和Cr进行谐振,次级D1关断,D2开通,二极管D1约为两倍输出电压,此时能量从Cr, Lr转换至次级。直到Q2关断。

2)〔t2,t3〕

Q1和Q2同时关断,此时处于死区时间, 此时电感Lr, Lm电流 给Q2的输出电容充电,给Q1的输出电容放电直到Q2输出电容的电压等于Vin.

次级D1和D2关断 Vd1=Vd2=0, 当Q1开通时该相位结束。

3)〔t3,t4〕

Q1导通,Q2关断。D1导通, D2关断, 此时Vd2=2Vout

Cr和Lr谐振在fr1, 此时Ls的电流通过Q1返回到Vin,直到Lr的电流为零次相位结束。

4)〔t4,t5〕

Q1导通, Q2关断, D1导通, D2关断,Vd2=2Vout

Cr和Lr谐振在fr1, Lr的电流反向通过Q1流回功率地。能量从输入转换到次级,直到Q1关断该相位结束

5)〔t5,t6〕

Q1,Q2同时关断, D1,D2关断, 原边电流I(Lr+Lm)给Q1的Coss充电, 给Coss2放电, 直到Q2的Coss电压为零。此时Q2二极管开始导通。Q2开通时

相位结束。

6)〔t6,t7〕

Q1关断,Q2导通,D1关断, D2 开通,Cr和Ls谐振在频率fr1, Lr 电流经Q2回到地。当Lr电流为零时相位结束。

02

LLC谐振转换器异常状态分析

以上描述都是LLC工作在谐振模式, 接下来我们分析LLC转换器在启机, 短路, 动态负载下的工作情况。

A、启机状态分析

通过LLC仿真我们得到如图3所示的波形,在启机第一个开关周期,上下管会同时出现一个短暂的峰值电流Ids1和Ids2。

由于MOSFET Q1开通时会给下管Q2的输出电容Coss充电,当Vds为高电平时充电结束。而峰值电流Ids1和Ids2也正是由于Vin通过MOSFET Q1给Q2结电容Coss的充电而产生。

半桥谐振

图3 LLC 仿真波形

我们将焦点放在第二个开关周期时如图4,我们发现此时也会出现跟第一个开关周期类似的尖峰电流,而且峰值会更高,同时MOSFET Q2 Vds也出现一个很高的dv/dt峰值电压。那么这个峰值电流的是否仍然是Coss引起的呢?我们来做进一步的研究。

半桥谐振

图4 第二个开关周期波形图

对MOSFET结构有一定了解的工程师都知道,MOSFET不同于IGBT,在MOSFET内部其实寄生有一个体二极管,跟普通二极管一样在截止过程中都需要中和载流子才能反向恢复, 而只有二极管两端加上反向电压才能够使这个反向恢复快速完成,而反向恢复所需的能量跟二极管的电荷量Qrr相关,而体二极管的反向恢复同样需要在体二极管两端加上一个反向电压。

在启机时加在二极管两端的电压Vd=Id2 x Ron. 而Id2在启机时几乎为零,而二极管在Vd较低时需要很长的时间来进行反向恢复。如果死区时间设置不够,如图5所示高的dv/dt会直接触发MOSFET内的BJT从而击穿 MOSFET。

半桥谐振

图5 高的dv/dt会直接触发MOSFET内的BJT从而击穿 MOSFET

通过实际的测试 ,我们可以重复到类似的波形,第二个开关周期产生远比第一个开关周期高的峰值电流,同时当MOSFET在启机的时dv/dt高118.4V/ns. 而Vds电压更是超出了600V的最大值。MOSFET在启机时存在风险。

半桥谐振

图6 实际测试的波形

B、异常状态分析

下面我们继续分析在负载剧烈变化时,对LLC拓扑来说存在那些潜在的风险。

在负载剧烈变化时,如短路,动态负载等状态时,LLC威廉希尔官方网站 的关键器MOSFET同样也面临着挑战。

通常负载变化时LLC 都会经历以下3个状态。我们称之为硬关断, 而右图中我们可以比较在这3个时序当中,传统MOSFET和CoolMOS内部载流子变化的不同, 以及对MOSFET带来的风险。

半桥谐振

时序1, Q2零电压开通,反向电流经过MOSFET和体二极管, 此时次级二极管D2开通,D1关段。

传统MOSFET此时电子电流经沟道区,从而减少空穴数量。

CoolMOS此时同传统MOSFET一样电子电流经沟道,穴减少,不同的是此时CoolMOS 的P井结构开始建立。

半桥谐振

时序2, Q1和Q2同时关断,反向电流经过MOSFETQ2体二极管。

Q1和Q2关断时对于传统MOSFET和CoolMOS来说内部电子和空穴路径和流向并没有太大的区别。

半桥谐振

时序3, Q1此时开始导通,由于负载的变化,此时MOSFET Q2的体二极管需要很长的时间来反向恢复。当二极管反向恢复没有完成时MOSFET Q2出现硬关断,此时Q1开通,加在Q2体二极管上的电压会在二极管形成一个大电流从而触发MOSFET内部的BJT造成雪崩。

-传统MOSFET此时载流子抽出,此时电子聚集在PN节周围, 空穴电流拥堵在PN节边缘。

-CoolMOS的电子电流和空穴电流各行其道, 此时空穴电流在已建立好的P井结构中流动,并无电子拥堵现象。

综上所述, 当LLC威廉希尔官方网站 出现过载,短路,动态负载等条件下,一旦二极管在死区时间不能及时反向恢复, 产生的巨大的复合电流会触发MOSFET内部的BJT使MOSFET失效。

有的 CoolMOS采用Super Juction结构,这种结构在MOSFET硬关断的状态下,载流子会沿垂直构建的P井中复合, 基本上没有侧向电流, 大大减少触发BJT的机会。

如何更容易实现ZVS

通过以上的分析,可以看到增加MOSFET的死区时间,可以提供足够的二极管反向恢复时间同时降低高dv/dt, di/dt 对LLC威廉希尔官方网站 造成的风险。但是增加死区时间是唯一的选择么?下面我们进一步分析如何够降低风险提升系统效率。

半桥谐振

对于LLC 威廉希尔官方网站 来说死区时间的初始电流为

半桥谐振

而LLC能够实现ZVS必须满足

半桥谐振

而最小励磁电感为

半桥谐振

根据以上3个等式,我们可以通过以下三种方式让LLC实现ZVS。

第一, 增加Ipk。

第二, 增加死区时间。

第三, 减小等效电容Ceq即Coss。

从以上几种状况,我们不难分析出。增加Ipk会增加电感尺寸以及成本,增加死区时间会降低正常工作时的电压,而最好的选择无疑是减小Coss,因为减小无须对威廉希尔官方网站 做任何调整,只需要换上一个Coss相对较小MOSFET即可。  

总结

LLC 拓扑广泛的应用于各种开关电源当中,而这种拓扑在提升效率的同时也对MOSFET提出了新的要求。

不同于硬开关拓扑,软开关LLC谐振拓扑不仅仅对MOSFET的导通电阻(导通损耗)、Qg(开关损耗)有要求,同时对于如何能够有效的实现软开关,如何降低失效率,提升系统可靠性,降低系统的成本有更高的要求。

CoolMOS,具有快速的体二极管,低Coss,有的可高达650V的击穿电压,使LLC拓扑开关电源具有更高的效率和可靠性。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分