微芯模拟嵌入式SuperFlash技术,提升边缘AI推理能力

描述

随着人工智能(AI)处理从云端转移至网络边缘,电池供电的深度嵌入式设备在执行AI任务(如计算机视觉和语音识别)时正面临挑战。Microchip Technology Inc.(美国微芯科技公司)通过旗下子公司冠捷半导体(SST),推出可显著降低功耗的模拟存储器技术——memBrain™神经形态存储器解决方案,以有效应对这一挑战。Microchip的模拟存储器解决方案基于业界认可的SuperFlash®技术,同时针对神经网络的矢量矩阵乘法(VMM)执行进行优化,通过模拟存储计算方法改进VMM的系统架构实施,提高边缘AI推理能力。

由于当前的神经网络模型可能需要50M或更多的突触(权重)来处理,因此为芯片外DRAM提供足够的带宽变得困难,成为神经网络计算的瓶颈,同时导致整体计算功耗的提高。相比之下,memBrain解决方案将突触权重存储在片上浮动栅中,从而显著改善系统时延。与传统的基于数字DSP和SRAM/DRAM的方法相比,新产品的功耗降低了10到20倍,并显著降低了整体物料清单(BOM)。

SST技术许可部副总裁Mark Reiten表示:“随着汽车、工业和消费类市场的技术供应商继续为神经网络实施VMM,我们的架构可帮助提升这些前瞻性解决方案的功耗、成本和时延性能。Microchip将继续为AI应用提供高可靠性和多功能的SuperFlash存储器解决方案。”

希望提高边缘设备机器学习能力的公司已经开始采用memBrain解决方案。由于能够显著降低功耗,memBrain模拟存储器计算解决方案是所有AI应用的理想选择。Syntiant公司首席执行官Kurt Busch表示:“Microchip的memBrain解决方案可为我们即将推出的模拟神经网络处理器提供超低功耗的存储计算。我们为边缘设备上的语音、图像和其他传感器模式中的不间断应用提供各种普适机器学习功能,与Microchip的合作为Syntiant带来了许多关键优势。”

SST将在2019年美国闪存峰会上展示本款模拟存储器解决方案,同时在人工智能/机器学习专业william hill官网 上展示Microchip的基于memBrain产品区块阵列的闪存性能扩展架构。2019年美国闪存峰会将于2019年8月6日至8日在加利福尼亚州圣克拉拉市圣克拉拉会议中心举行。

开发工具

SST为其memBrain解决方案和SuperFlash技术提供设计服务,并提供用于神经网络模型分析的软件工具包。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分