目前的语音识别和NLP技术仍然不够成熟

音视频及家电

737人已加入

描述

(文章来源:中国安防展览网)

智能语音语义包含语音合成、语音识别和自然语言处理(NLP)叁项主要技术。

语音合成技术发展早,应用已较为普遍,除了合成音仍偏机械之外,基本不存在太大技术问题;语音识别在2012年卷积神经网络(CNN)应用之后,准确率大幅提升,已经在C端、B端得到了广泛应用,但效果和体验还不够理想;NLP技术虽然在搜索引擎中早有应用,但在人机交互领域仍属于浅层处理。

在生物学中,有个术语叫做“鲁棒性”,是指系统在扰动或不确定的情况下,仍能保持它的特征行为。这一问题在语音识别领域也存在。

语音识别整个过程包含语音信号处理、静音切除、声学特征提取、模式匹配等多个环节。由于语音信号的多样性和复杂性,系统只能在一定限制条件下才能获得满意效果。在真实使用场景中,考虑到远场、方言、噪音、断句等问题,准确率会大打折扣。目前业内普遍宣称的97%识别准确率,更多的是人工测评结果,只在安静室内的进场识别中才能实现。

要解决语音识别鲁棒性问题,需要在技术和产品两方面进行优化。一方面,在语音增强、麦克风阵列以及说话人分离等多项技术领域持续投入,并结合后端语义,促进对上下文的理解,从而提升识别效果;另一方面,需要从产品设计上进行优化,比如通过进一步交互,使语音识别变得更为准确。

NLP技术大致包含叁个层面:词法分析、句法分析、语义分析,叁者之间既递进又相互包含。

词义消歧是NLP技术的大瓶颈。机器在切词、标注词性、并识别完后,需要对各个词语进行理解。由于语言中往往一词多义,人在理解时会基于已有知识储备和上下文环境,但机器很难做到。虽然系统会对句子做句法分析,可以在一定程度上帮助机器理解词义和语义,但实际情况并不理想。

目前,机器对句子的理解还只能做到语义角色标注层面,即标出句中的句子成分和主被动关系等,它属于比较成熟的浅层语义分析技术。未来要让机器更好地理解人类语言,并实现自然交互,还是需要依赖深度学习技术,通过大规模的数据训练,让机器不断学习。当然,在实际应用领域中,也可以通过产品设计来减少较为模煳的问答内容,以提升用户体验。

由于人工智能技术对数据依赖性极高,因此,这一领域的技术进步和产业化推进是一种协同关系——通过工程化的方法提升技术效果和体验,从而促进产业化应用,再根据实际应用中的数据和反馈,反过来推动技术实现突破。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分