×

如何使用深度卷积神经网络进行ImageNet数据库的分类

消耗积分:0 | 格式:rar | 大小:1.54 MB | 2019-12-03

分享资料个

  我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010 大赛中的120万张高清图像分为1000 个不同的类别。对测试数据,我们得到了top-1 误差率37.5%,以及top-5 误差率17.0%,这个效果比之前最顶尖的都要好得多。该神经网络有6000 万个参数和650,000 个神经元,由五个卷积层,以及某些卷积层后跟着的max-pooling 层,和三个全连接层,还有排在最后的1000-way 的softmax 层组成。为了使训练速度更快,我们使用了非饱和的神经元和一个非常高效的GPU 关于卷积运算的工具。为了减少全连接层的过拟合,我们采用了最新开发的正则化方法,称为“ dropout”,它已被证明是非常有效的。在ILSVRC-2012 大赛中,我们又输入了该模型的一个变体,并依靠top-5 测试误差率15.3%取得了胜利,相比较下,次优项的错误率是26.2%。

 

  1 引言

  当前物体识别的方法基本上都使用了机器学习方法。为了改善这些方法的性能,我们可以收集更大的数据集,学习更强有力的模型,并使用更好的技术,以防止过拟合。直到最近,标记图像的数据集都相当小——大约数万张图像(例如,NORB [16] ,Caltech-101/256[8, 9] ,以及CIFAR-10/100 [12] )。简单的识别任务可以用这种规模的数据集解决得相当好,特别是当它们用标签-保留转换增强了的时候。例如,在MNIST 数字识别任务中当前最好的误差率(《0.3%)接近于人类的表现[4] 。但是现实环境中的物体表现出相当大的变化,因此要学习它们以对它们进行识别就必须使用更大的训练集。事实上,小规模图像数据集的缺陷已被广泛认同(例如, Pinto 等人[21]),但是直到最近,收集有着上百万张图像的带标签数据集才成为可能。更大型的新数据集包括LabelMe [23],它由几十万张完全分割图组成,还有ImageNet [6],它由多于22,000个种类中超过1500 万张带标签的高分辨率图像组成。

  为了从几百万张图像中学习数以千计的物体,我们需要一个学习能力更强的模型。然而,物体识别任务的极大复杂性意味着这个问题不能被指定,即使是通过与ImageNet一样大的数据集,所以我们的模型中也应该有大量的先验知识,以补偿我们所没有的全部数据。卷积神经网络(CNN)构成了一个这种类型的模型[16, 11, 13, 18, 15, 22, 26]。它们的能力可以通过改变其深度与广度得到控制,它们也可作出有关图像性质的强壮且多半正确的假设(即,统计数据的稳定性和像素依赖关系的局部性) 。因此,与层次规模相同的标准前馈神经网络相比, CNN 的连接关系和参数更少,所以更易于训练,而其理论上的最佳性能可能只略差一点。不论CNN 的性质多有吸引力, 也不论它们局部结构的相对效率有多高,将它们大规模地应用到高分辨率图像中仍然是极其昂贵的。幸运的是,目前的GPU 搭配了一个高度优化的2D 卷积工具,强大到足以促进大规模CNN 的训练,而且最近的数据集像ImageNet2包含足够的带标签的样例来训练这样的模型,还不会有严重的过拟合。本文的具体贡献如下:我们在ILSVRC-2010 和ILSVRC-2012 大赛中使用过的ImageNet的子集上[2] ,训练了迄今为止最大型的卷积神经网络之一,并取得了迄今为止在这些数据集上报告过的最好结果。我们写了一个高度优化的GPU 二维卷积工具以及训练卷积神经网络过程中的所有其他操作,这些我们都提供了公开地址。我们的网络中包含一些既新鲜而又不同寻常的特征,它们提高了网络的性能,并减少了网络的训练时间,这些详见第3 节。我们的网络中甚至有120 万个带标签的训练样本,这么大的规模使得过拟合成为一个显著的问题,所以我们使用了几种有效的方法来防止过拟合,这些在第4 节中给以描述。我们最终的网络包含五个卷积层和三个全连接层,且这种层次深度似乎是重要的:我们发现,移去任何卷积层(其中每一个包含的模型参数都不超过1%)都会导致性能变差。

  最后,网络的规模主要受限于当前GPU 的可用内存和我们愿意容忍的训练时间。我们的网络在两块GTX 580 3GB GPU 上训练需要五到六天。我们所有的实验表明,等更快的GPU 和更大的数据集可用以后,我们的结果就可以轻而易举地得到改进。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="//m.obk20.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'如何使用深度卷积神经网络进行ImageNet数据库的分类',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"//www.obk20.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);