几乎每个人都意识到需要优化能效,无论是力求在高能源价格时代限制成本的消费者和企业运营商,还是期望满足日益复杂的要求和众多标准的设计人员。如果尚未以浪费能源的高成本为动力,那么产生能量对环境的影响就会随着热量的增加而成为越来越显著的问题。认识到需要改进,各国政府和行业协会都制定了书面标准,在某些情况下必须在产品投放市场前就满足这些标准。关注成本或有环保意识的客户在做出购买决定时依赖于这些标准,以确信他们在购买高能效的产品。需要解决的一个关键领域是功率因数校正(PFC)级,包括电磁干扰(EMI)滤波器。
高能效不仅仅在单个点
对于任何与电源有关的应用,能效一直是个问题,也是制造商在其规格中规定的一个参数。然而,在过去高能效被认为是单个点尽可能最好的数字,通常在满载的75%左右。因此,制造商将注意力集中在这一负载水平,以提高他们所理解的产品能效。但实际上器件在这个功率水平上只工作一小部分时间。在实际应用中,特别是具有动态负载的应用中,这代表实际能效远远低于预期。为了解决这种情况,现代能源标准考虑的是整个能效曲线的性能,而不仅仅是曲线上的最佳点。因此,设计人员正在研究如何设计电源转换系统的关键器件,以在低负载和中等负载水平下工作得更好。最关键的一个领域是PFC级和EMI滤波器,二者共消耗高达8%的输出功率。
PFC概述
电力公司的供电电压总是正弦的,但线路电流的波形和相位取决于所供电的负载。对于最简单的电阻负载,负载电流也是正弦的,并且在相位上使功率易于计算。如果负载中有电抗元件,如电感或电容器,则负载电流保持正弦,但相移与电压有关。在这种情况下,有功功率(也称为“实际”或“平均”功率)像以前一样计算,但要乘以相角(位移因子)的余弦。无功负载越多,有功功率越低。非线性负载的情况更复杂,例如集成一个二极管桥和大输入电容的典型开关电源的输入级。在这里,电流是一系列浪涌尖峰,计算功率要使用傅里叶变换(Fourier transformation)。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !