不断丰富的高速和极高速ADC以及数字处理产品正使过采样成为宽带和射频系统的实用架构方法。半导体技术进步为提升速度以及降低成本做出了诸多贡献(比如价格、功耗和威廉希尔官方网站 板面积),让系统设计人员得以探索转换和处理信号的各种方法--无论使用具有平坦噪声频谱密度的宽带转换器,或是使用在目标频段内具有高动态范围的带限Σ-Δ型转换器。这些技术改变了设计工程师对信号处理的认识,以及他们定义产品规格的方式。噪声频谱密度(NSD)及其在目标频段内的分布,能够让其在数据转换过程中更好的被滤除。比较在不同速度下工作的系统,或者查看软件定义系统如何处理不同带宽的信号时,噪声频谱密度(NSD)可以说比信噪比 (SNR)更为有用。它不能取代其他规格,但会是分析工具箱中的一个有用参数指标。
我的目标频段内有多少噪声?
数据转换器数据手册上的SNR表示满量程信号功率与其他所有频率的总噪声功率之比。
现在考虑一个简单情况来比较SNR和NSD,如图1所示。假设ADC时钟频率为75 MHz。对输出数据运行快速傅里叶变换 (FFT),图中显示的频谱为从直流到37.5 MHz。本例中,目标信号是唯一的大信号,且碰巧位于2 MHz附近。对于白噪声(大部分情况下包含量化噪声和热噪声)而言,噪声均匀分布在转换器的奈奎斯特频段内,本例中为直流至37.5 MHz。由于目标信号在直流与4 MHz之间,故可相对简单地应用数字后处理以滤除或抛弃一切高于4 MHz的频率(仅保留红框中的内容)。这里将需要丢弃7⁄8噪声,保留所有信号能量,从而有效SNR改善9 dB。换句话说,如果知道信号位于频段的一半中,那么事实上可以在仅消除噪声的同时,丢弃另一半频段。这就引出了一条有用的经验法则:存在白噪声时,调制增益可使过采样信号的SNR额外改善3 dB/倍频程。在图1示例中,可将此技巧应用到三个倍频程中(系数为8),从而使SNR改善9 dB。当然,如果信号处于直流和4 MHz之间某处,那么就不需要使用快速75 MSPS ADC来捕捉信号。只需9 MSPS或10 MSPS便能满足奈奎斯特采样定理对带宽的要求。事实上,可以对75 MSPS采样数据进行1/8抽取,产生9.375 MSPS有效数据速率,同时保留目标频段内的噪底。正确进行抽取很重要。如果只是每8个样本丢弃7个,那么噪声会折叠或混叠回到目标频段内,这样将得不到任何SNR改善。必须先滤波再抽取,才能实现调制增益。即便如此,虽然理想的滤波器会消除一切噪声,实现理想3 dB/倍频程的调制增益,但实际滤波器不具备此类特性。在实践中,所需的滤波器阻带抑制量与试图实现多少调制增益成函数关系。另外应注意,“3 dB/倍频程”的经验法则是基于白噪声假设。这是一个合理的假设,但并非适用于一切情况。一个重要的例外情况是动态范围受非线性误差或通带中的其他杂散交调分量影响。在这些情况下,“滤波并丢弃”方法不一定能滤除杂散分量,可能需要更细致的频率算法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !