随着便携式电子产品、“智能设备”和汽车电子产品的普及,IC 中嵌入模拟功能的需求也在不断增加。这推动了对特定模拟技术的需求,这些技术在整个半导体市场中所占的比例越来越大。
通过一些简化,模拟技术可以分为三个主要类别:
高功率 BiCMOS:主要目标是功率器件的 RDSON 和击穿电压。通常具有非常广泛的组件类型(双极、CMOS、LDMOS 和 DEMOS 器件),涵盖从低压(LV,几伏)到极高电压(HV,数百伏)的应用。
高速 BiCMOS:主要目标是双极器件的速度,以支持高达数百 GHz 的高速应用。
模拟-CMOS:主要特点是高密度 CMOS 逻辑,以及低寄生、低噪声和高质量的无源器件。它们往往是 CMOS 技术的“衍生物”。
静电放电 (ESD) 是一种从身体到物体的静电荷转移,它会在短时间内(数百纳秒)产生高电流(几安培)。ESD 事件可能由 IC 在制造过程中的人工处理/测试引起,并可能导致灾难性的损坏。为了保证 ESD 对处理/测试的稳健性,每个 IC 都经过标准 ESD 测试,通常是人体模型 (HBM) 和带电设备模型 (CDM)。
为了达到所需的 ESD 稳健性水平,在每个焊盘上添加了专用的片上威廉希尔官方网站 (通常称为“ESD 保护”或“ESD 钳位”),以将 ESD 能量吸收到受保护威廉希尔官方网站 的安全水平。在典型的 ESD 保护实施中,每个焊盘到焊盘的组合都必须具有通过 ESD 保护的有效 ESD 放威廉希尔官方网站 径(图 1)。模拟技术对 ESD 稳健设计提出了许多挑战。
ESD 技术挑战
CMOS 和模拟技术之间的一个根本区别在于后者通常是模块化构建的。这允许 IC 设计人员仅选择一部分可用的工艺掩模,以精确定制设计需求(并非给定工艺中可用的所有组件都可用于设计)。
从 ESD 设计的角度来看,这意味着 ESD 设计人员必须支持具有不同掩模组的相同 ESD 应用。这可能非常具有挑战性,因为 ESD 保护的实际行为在很大程度上取决于掩模组。换句话说,可能需要构建多个版本的相同 ESD 保护,具体取决于可用的掩模组。
模拟技术的另一个具有挑战性的方面在于利用模型。虽然最先进的 CMOS 技术只有几年的寿命,但模拟技术可能使用 10-15 年,甚至 20 年。在此生命周期内产生的应用程序组合对 ESD 设计来说是一个相当大的挑战。
ESD 设计挑战
漏极扩展 MOS
漏极扩展 MOS (DEMOS) 是一种器件,其中将同类型的低掺杂区添加到高掺杂漏极区或漏极扩展区(图 2)。这会影响额定电压(即击穿增加)和漏栅压降(与栅氧化层可靠性相关)。另一方面,这种类型的设计会降低驱动电流特性,因为通道通常没有针对该结进行优化。更复杂的版本,横向扩散 MOS (LDMOS),具有更好的电流驱动特性。
从 ESD 的角度来看,DEMOS 晶体管具有非常低的 ESD 鲁棒性,即在 ESD 条件下能够承受高电流密度的能力。DEMOS 的 ESD 弱点是高效 ESD 设计的主要挑战,因为它需要特殊的 ESD 保护威廉希尔官方网站 ,在 ESD 事件(这对面积有影响)期间不会使用 DEMOS 晶体管。在过去的 15 年中,多项研究已经解决了这个特定问题,这也归功于在最先进的 CMOS 技术中使用这些组件。
最近的一项工作 [1] 表明,在高掺杂/低掺杂漏区(图 3 中的“SBLK”区)上阻止硅化工艺可以显着提高 DEMOS 晶体管的 ESD 稳健性。
这种结构基本上增加了漏极侧的电阻。虽然它的具体影响相当复杂,但它可以被视为一种防止非均匀电流传导通过器件整个宽度上的 ESD 电流分布的方法。
3 维 TCAD 电热模拟清楚地描绘了沿器件整个宽度的均匀 ESD 电流分布,并阻止了漏区的硅化(图 4)。这将允许一些 ESD 能量被具有这种结构的 DEMOS 耗散,从而减少对 ESD 保护设计的限制。
高压有源 FET
“有源 FET”是非常流行的 ESD 保护器件,通常用于低电压应用。该名称指的是 ESD 电流在主动操作模式下通过 MOS 器件分流的事实。此模式仅在 ESD 条件下通过 ESD 事件检测器启用。该威廉希尔官方网站 被定时以在 ESD 事件的整个持续时间(1-2 微秒)内保持导通状态。
在 CMOS 技术中,氧化物和漏极结共享相同的额定电压,通态是通过将漏极与栅极瞬态耦合来实现的。此概念的基本实现如图 5 所示。
对于 HV 器件(如前面提到的 DEMOS 和 LDMOS),漏极额定值可能远高于栅极额定值(例如,漏极额定值为 20V,而栅极仅为 3.3V)。因此,如图所示的威廉希尔官方网站 将无法工作,因为漏极和栅极基本上具有相同的电压,从而导致栅极可靠性问题(图 5)。
需要一种将焊盘电压分压以实现适当栅极电压的方法。这可以通过源跟踪级实现(图 6)。该方案允许典型的高压器件在正常的漏极和栅极工作额定值内工作。此外,它还提供了优于威廉希尔官方网站 的两个显着优势(图 5):
电容小得多,因为它驱动一个小得多的晶体管。
开启/关闭时间常数是分开的,可以单独优化。
高压可控硅整流器 (SCR)
可控硅整流器 (SCR) 是 pnpn 结构。由于垂直pnp晶体管和嵌入在这种pnpn结构中的横向npn晶体管的相互耦合,就ESD功耗而言,SCR是最有效的器件。一旦两个双极中的一个打开,它就会打开另一个,依此类推。
参考图 2,通过在漏阱扩展中添加高掺杂 P 型扩散,将 SCR 集成到任何 DeMOS(或 LDMOS)中非常简单。从图 6 中可以看出,形成了具有相互耦合的 npn 和 pnp 的 pnpn 结构。此外,栅极的存在可用于进一步调整 HV-SCR ESD 特性。
SCR 类型的基本问题是它们能够保持功率缩放特性 [2],因为所施加的 ESD 应力的脉冲宽度增加。更具体地说,基于 SCR 在 100ns ESD 脉冲下消耗的最大功率,人们可以预期 [2] 在 200ns 和 500ns ESD 脉冲下消耗一定的功率。
然而,在 200ns 和 500ns ESD 脉冲下实际消耗的最大功率远低于预期(图 8)。这是一个重大问题,尤其是在源自系统级事件的 ESD 脉冲的情况下,应力持续时间可能大大超过标准 HBM 事件的持续时间。
高压双极
正如 HV SCR 所强调的那样,高压双极器件无法避免较差的缩放功率缩放特性。这在图 9 中可以看到,其中实际最大功耗从 100ns 开始不遵循功率缩放定律。
除了与设计为 ESD 保护威廉希尔官方网站 的 HV 双极器件相关的功率缩放问题外,还有另一个与 HV 双极相关的问题需要考虑:由连接到相邻焊盘的 N 扩散形成的寄生双极。
参考图 10,焊盘(PAD1 和 PAD2)通常具有以公共接地 (GND) 为参考的 ESD 保护。在从 PAD1 到 PAD2 的 ESD 事件的情况下,ESD 电流(图 10 中的红色实线)将从 ESD 保护 1 流过公共 GND 和 ESD 保护 2,到达 PAD2。由于 N 扩散与 PAD1 和 PAD2 相关,现在形成了一个寄生 npn 双极(公共 p 衬底充当双极的基极),它可以在 ESD 事件期间传导电流并最终失效。
这种配置的主要问题是由于 ESD 电流在 ESD 保护 2 中流动,寄生双极(公共接地)的基极具有升高的电位。这使得寄生双极非常容易被触发,因此,容易失败。
与 CMOS 技术不同,在模拟技术中,具有多个 N 型扩散以支持许多不同的额定电压和隔离技术是很常见的。因此,任何 N 型扩散的排列都会在类似于图 10 所示的情况下产生寄生效应。考虑到发射极、集电极、基极类型和几何效应的数量,很有可能在一个威廉希尔官方网站 中产生数百个寄生双极给定的技术。这对于 ESD 设计来说颇具挑战性,因为 ESD 保护网络必须能够充分保护上述寄生效应。
ESD 资格挑战
“片上”系统级要求
为保证 IC 制造过程中对 ESD 事件的稳健性,进行了 HBM 和 CDM 测试。在过去的几年中,需要在 IC 级别进行系统级 ESD 保护的新趋势正在出现。通常系统级 ESD 保护是在系统级解决的,方法是在威廉希尔官方网站 板上(靠近 ESD 应力源)放置专用瞬态电压抑制器 (TVS) 威廉希尔官方网站 。这一趋势背后的基本原理是,如果单个 IC 具有 ESD 系统级稳健性,则可以消除 TVS(从而降低成本和系统设计复杂性)。
在不深入探讨为什么这个理由存在缺陷的情况下,这些要求对 IC 级 ESD 设计的影响是巨大的,不仅在 ESD 面积方面,而且在设计复杂性和所需的学习周期方面。
自定义 ESD 级别要求
IC 级 ESD 稳健性的典型 ESD 级要求是 2000V HBM 和 500V CDM。尽管已明确证明 1000V HBM 和 250V CDM 在当今的制造环境中提供了非常可靠的 ESD 设计,但某些客户可能需要在所选引脚上具有 >8KV HBM 性能以处理未指定的系统级事件。这些要求的影响同样在面积和开发时间方面非常重要。
可持续发展战略
模拟技术组件产品组合的广度以及随后需要保护的大量应用,并不适合满足所有要求的“单一 ESD 策略”。因此,模拟技术领域的 ESD 工程师正在研究所有 ESD 保护策略,仔细权衡利弊以找到最合适的解决方案。
有源 FET:它们非常有效,在低压应用中很受欢迎。然而,对于高电压应用,低 FET 的驱动电流和大面积的结合使它们不太吸引人。
基于击穿的设备:它们依赖于寄生双极 npn 或 pnp。由于出色的面积/ESD 性能权衡,基于 Npn 的技术非常受欢迎。主要缺点是难以通过过程变化来控制性能。
SCRs:这些解决方案在面积/ESD 性能方面是最有效的,而且它们很容易设计。然而,从 DRC-LVS 的角度来看,固有的闩锁风险和难以实现,在某种程度上限制了它们的使用。
自我保护:这种解决方案在大输出驱动器的情况下非常有效,它也可以设计为承受 ESD 事件。缺点是需要在 IP 和 ESD 之间进行协同设计。
近年来,模拟技术的相关性迅速增加,在这项工作中,我们回顾了与技术、设计和资格要求相关的 ESD 挑战。
参考文献
[1] A. Salman 等人,国际可靠性物理研讨会论文集,2012
[2] DC Wunsch 和 RR Bell,IEEE Trans。核。Sci., 1968
[3] IEC61000-4-2:电磁兼容性 (EMC) – 第 4-2 部分
编辑:hfy
全部0条评论
快来发表一下你的评论吧 !