基于NiosⅡ的嵌入式高速逻辑分析仪

嵌入式操作系统

57人已加入

描述

基于NiosⅡ的嵌入式高速逻辑分析仪

由于数字信号只有高电平和低电平两种情况,因此,用单片机 (MCU)就可直接实现多路数字信号进行采集和逻辑分析。但由于单片机的时钟频率较低,完成一次采样的时间受程序执行指令速度的限制,采样速率通常不超过 1MHz。因此,用单片机只能实现对低速率数字信号进行逻辑分析。FPGA的工作时钟速率通常可达 200MHz以上,可对高速数字信号进行采样,但普通的 FPGA在与外部设备进行数据交换时显得不灵活。为了解决上述问题,通常是将 MCU与 FPGA结合起来,用 FPGA对高速数字信号进行采样,用 MCU负责与外部设备进行数据交换,从而实现对高速数字信号进行逻辑分析,如图 1所示。

NiosⅡ

随着可编程逻辑器件的发展,Altera公司研发了可以嵌入软 CPU核的 Cyclone系列和 Stratix系列的 FPGA芯片。嵌入式软核与普通硬核的昀大差别在于它的可裁减性,设计者可根据设计需求定制出不同结构的软核处理器。软 CPU核的嵌入实现了 CPU与 FPGA的无缝连接,使芯片既能处理高速数字信号,又能方便灵活地与芯片外部设备进行数据交换,还增加了系统的集成度和可靠性。

2 定制软 CPU核

软核的定制要利用 Altera公司提供的 SOPC Builder软件。

2.1定制 NiosⅡ处理器早期的软核处理器是 Nios,但其稳定性不够好,现已被 NiosⅡ所替代。 NiosⅡ处理器有三种类型: e(经济型 )、s(标准型)和 f(增强型)。选择不同类型的处理器所占用的逻辑资源和存储器资源大小不同,处理器的运算速度处理能力也有所差别。

2.2定制片内 RAM

片内 RAM作为软核程序的运行空间,对于没有扩展外部存储器的设计,片内 RAM是必须的部分。通过软件设计向导,可以设置片内存储器的类型,大小,以及初始化文件。 Cyclone系列芯片有 13~64个片内 RAM块,每个 RAM块的大小是 4K(128字×36位),用户可根据需要设置存储器的字数和字长。当定义的字数超过 128时,多个 RAM块可组成在一起,构成更大容量的存储器,满足设计要求。

2.3定制 UART接口

UART接口是软核与计算机通信的主要接口,通过设计向导可定制 UART接口。在定制 UART接口时,可以设置其波特率,校验位,是否允许 DMA控制。通过此基本设置,软核可以与 PC机之间实现串口通信的功能。

2.4定制 LCD控制端口和键盘控制端口此类端口是普通 I/O端口,设置比较简单。需要注意的是 LCD的数据端口是 8位的双向端口。当定制了以上 4部分后,即可生成软 CPU核。

3 最小系统形成

完成定制软核后,需要对软核编程,形成基于软核的昀小系统。

对软核的编程在 Nios ⅡIDE环境下进行。首先利用软件生成针对某软核的模版程序,用户程序都可以从模版开始。在生成模版程序的同时,也形成了 system.h文件,此文件中包含了对用户编程有用的许多信息,包括所有端口的地址空间分配,中断号等。在文件 altera_avalon_pio_regs.h中包含了对普通 I/O端口进行读写操作的函数,通过对函数的调用可实现对端口的操作。在文件 altera_avalon_uart_regs.h中包含了对 UART操作的基础函数,对串口的所有操作,都可通过对此中函数的调用来完成。

NiosⅡ

在昀小系统中,实现软核对 LCD的数据交换,读取键盘值,以及与计算机之间的通信。本设计键盘使用 4*4键盘,显示器采用 240*128点阵 LCD显示模块。主要子程序流程图如图 2所示。

4 基于软核的逻辑分析仪设计

4.1总体结构

基于 NiosⅡ的逻辑分析仪,采用 FPGA硬件对数据采集和存储,NiosⅡ软核进行交互、控制和通信,并且可以通过 LCD显示所采集数据的逻辑状态或通过 RS-232接口与 PC机通信,在 PC上显示数据的波形并对数据长期存储。另外,通过键盘可对逻辑分析仪的采样频率、触发方式等参数进行设置,这些设置也都可以通过 PC机进行。逻辑分析仪的整体结构如图 3所示。 

 

NiosⅡ



4.2嵌入模块

4.2.1触发核模块

触发核主要决定什么时候采集数据,什么时候完成对数据的采集。在本设计中,触发条件分上升沿触发、下降沿触发、高电平触发和低电平触发四种。区分这 4种触发信息至少要用到连续两个时钟的数据,因此每级触发条件有两个条件判断字,触发核通过两次比较判断是否触发。触发核是硬件核,由组合威廉希尔官方网站 和触发器组成。

4.2.2 PLL模块

在对数字信号进行采样时,需要的时钟频率至少应是数字信号波特率的 5倍。Cyclone器件的嵌入式数字 PLL要求外部输入 CLK信号昀低频率不能低于 20MHz,可通过分频的方式得到低频 CLK,通过倍频的方式得到高频 CLK,也可通过倍频和分频组合得到特殊的输出频率,本设计采用 25倍频和 2分频,使昀高时钟频率达 250MHz。

4.2.3数据存储模块

由于软核在工作时也是在执行指令,运行速度不快,不能完成对高速数字信号的采集。为此,本设计在 FPGA芯片中嵌入了 FIFO,作为数据的缓存。所采集的数据,首先存入 FIFO存储器中,这个过程全部通过硬件完成,每个采样时钟周期可完成一次数据的写入操作。当 FIFO中数据写满时,存储器将通知软核读取数据,软核完成数据的处理、显示和传输等操作。

由于 Cyclone器件中 FIFO的容量不大,若采用固定的采用时钟,当输入数字信号的波特率较低时,FIFO存储的数据可能还不到一个码元宽度的数据,从而无法在 LCD上显示其波形。因此,本设计采用了程控调整采样速率,从而保证了无论是低波特率信号还是高波特率信号,系统都能正确采样和显示波形。

4.3软核设计软核作为设计的控制核心具有重要作用,为了完成对 8路数据触发模式的设置,以及与

PC机通信,在用 SOPC Builder软件定制软核时,为其加入了 UART接口和若干位输入输出端口,这些端口也实现了通过键盘对各路数据触发方式和其它各参数的设置。

4.4软件设计

本设计编程语言采用的是 C++,软件流程包括参数设置、触发判断、数据采集、分析与通信、图形显示五个方面,主程序流程如图 5所示。

NiosⅡ
5 结束语

本设计通过在 Cyclone芯片中嵌入软 CPU、数字 PLL、FIFO和 UART,实现了单片式 8路高速数字信号分析仪。可用键盘改变采样速率,满足对不同速率的数字信号进行采样;用点阵式 LCD显示所采集的 8路数字信号;也可通过串口将采集的数据传输到 PC机进行存储、处理和显示。本设计的时钟频率昀高可 250MHz(CycloneⅡ芯片所支持的昀高工作频率),从而可以对 8路波特率为 50Mbs的数字信号进行采集与显示。

图 5是通过嵌入式逻辑分析仪采集后,通过串行通信口送到 PC机,在 PC机屏幕上显示的 8路数字信号实拍照片。

 

NiosⅡ



参考文献

[1] 潘松,黄继业. SOPC技术实用教程.清华大学出版社.2005

[2] NiosⅡ嵌入式处理器设计大赛2006年优秀作品精选集. 西安电子科技大学出版社.2006

[3] 李亚春等.基于 SOPC的数字视频监控系统设计[J].微计算机信息,2008,8-2, 149-151。

[4]袁海林.基于 Nios II的数字音频录放系统的设计[J].微计算机信息,2007,5-2,129-130。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分