一道比较有难度的完美矩形题

描述

今天讲一道非常有意思,而且比较有难度的题目。

我们知道一个矩形有四个顶点,但是只要两个顶点的坐标就可以确定一个矩形了(比如左下角和右上角两个顶点坐标)。

来看看力扣第 391 题「完美矩形」,题目会给我们输入一个数组rectangles,里面装着若干四元组(x1,y1,x2,y2),每个四元组就是记录一个矩形的左下角和右上角顶点坐标。

也就是说,输入的rectangles数组实际上就是很多小矩形,题目要求我们输出一个布尔值,判断这些小矩形能否构成一个「完美矩形」。函数签名如下:

def isRectangleCover(rectangles: List[List[int]]) -> bool

  所谓「完美矩形」,就是说rectangles中的小矩形拼成图形必须是一个大矩形,且大矩形中不能有重叠和空缺。

  比如说题目给我们举了几个例子:

 

代码

   

代码

   

代码

 

  这个题目难度是 Hard,如果没有做过类似的题目,还真做不出来。

  常规的思路,起码要把最终形成的图形表示出来吧,而且你要有方法去判断两个矩形是否有重叠,是否有空隙,虽然可以做到,不过感觉异常复杂。

  其实,想判断最终形成的图形是否是完美矩形,需要从「面积」和「顶点」两个角度来处理。

  先说说什么叫从「面积」的角度。

  rectangles数组中每个元素都是一个四元组(x1, y1, x2, y2),表示一个小矩形的左下角顶点坐标和右上角顶点坐标。

  那么假设这些小矩形最终形成了一个「完美矩形」,你会不会求这个完美矩形的左下角顶点坐标(X1, Y1)和右上角顶点的坐标(X2, Y2)?

  这个很简单吧,左下角顶点(X1, Y1)就是rectangles中所有小矩形中最靠左下角的那个小矩形的左下角顶点;右上角顶点(X2, Y2)就是所有小矩形中最靠右上角的那个小矩形的右上角顶点。

  注意我们用小写字母表示小矩形的坐标,大写字母表示最终形成的完美矩形的坐标,可以这样写代码:

# 左下角顶点,初始化为正无穷,以便记录最小值
X1, Y1 = float('inf'), float('inf')
# 右上角顶点,初始化为负无穷,以便记录最大值
X2, Y2 = -float('inf'), -float('inf')

for x1, y1, x2, y2 in rectangles:
    # 取小矩形左下角顶点的最小值
    X1, Y1 = min(X1, x1), min(Y1, y1)
    # 取小矩形右上角顶点的最大值
    X2, Y2 = max(X2, x2), max(Y2, y2)

  这样就能求出完美矩形的左下角顶点坐标(X1, Y1)和右上角顶点的坐标(X2, Y2)了。

  计算出的X1,Y1,X2,Y2坐标是完美矩形的「理论坐标」,如果所有小矩形的面积之和不等于这个完美矩形的理论面积,那么说明最终形成的图形肯定存在空缺或者重叠,肯定不是完美矩形。

  代码可以进一步:

def isRectangleCover(rectangles: List[List[int]]) -> bool:
    X1, Y1 = float('inf'), float('inf')
    X2, Y2 = -float('inf'), -float('inf')
    # 记录所有小矩形的面积之和
    actual_area = 0
    for x1, y1, x2, y2 in rectangles:
        # 计算完美矩形的理论坐标
        X1, Y1 = min(X1, x1), min(Y1, y1)
        X2, Y2 = max(X2, x2), max(Y2, y2)
        # 累加所有小矩形的面积
        actual_area += (x2 - x1) * (y2 - y1)

    # 计算完美矩形的理论面积
    expected_area = (X2 - X1) * (Y2 - Y1)
    # 面积应该相同
    if actual_area != expected_area:
        return False

    return True

  这样,「面积」这个维度就完成了,思路其实不难,无非就是假设最终形成的图形是个完美矩形,然后比较面积是否相等,如果不相等的话说明最终形成的图形一定存在空缺或者重叠部分,不是完美矩形。

  但是反过来说,如果面积相同,是否可以证明最终形成的图形是完美矩形,一定不存在空缺或者重叠?

  肯定是不行的,举个很简单的例子,你假想一个完美矩形,然后我在它中间挖掉一个小矩形,把这个小矩形向下平移一个单位。这样小矩形的面积之和没变,但是原来的完美矩形中就空缺了一部分,也重叠了一部分,已经不是完美矩形了。

  综上,即便面积相同,并不能完全保证不存在空缺或者重叠,所以我们需要从「顶点」的维度来辅助判断。

  记得小学的时候有一道智力题,给你一个矩形,切一刀,剩下的图形有几个顶点?答案是,如果沿着对角线切,就剩 3 个顶点;如果横着或者竖着切,剩 4 个顶点;如果只切掉一个小角,那么会出现 5 个顶点。

  回到这道题,我们接下来的分析也有那么一点智力题的味道。

  显然,完美矩形一定只有四个顶点。矩形嘛,按理说应该有四个顶点,如果存在空缺或者重叠的话,肯定不是四个顶点,比如说题目的这两个例子就有不止 4 个顶点:

 

代码

 

  PS:我也不知道应该用「顶点」还是「角」来形容,好像都不太准确,本文统一用「顶点」来形容,大家理解就好~

  只要我们想办法计算rectangles中的小矩形最终形成的图形有几个顶点,就能判断最终的图形是不是一个完美矩形了。

  那么顶点是如何形成的呢?我们倒是一眼就可以看出来顶点在哪里,问题是如何让计算机,让算法知道某一个点是不是顶点呢?这也是本题的难点所在。

  看下图的四种情况:

 

代码

 

  图中画红点的地方,什么时候是顶点,什么时候不是顶点?显然,情况一和情况三的时候是顶点,而情况二和情况四的时候不是顶点。

  也就是说,当某一个点同时是 2 个或者 4 个小矩形的顶点时,该点最终不是顶点;当某一个点同时是 1 个或者 3 个小矩形的顶点时,该点最终是一个顶点。

  注意,2 和 4 都是偶数,1 和 3 都是奇数,我们想计算最终形成的图形中有几个顶点,也就是要筛选出那些出现了奇数次的顶点,可以这样写代码:

def isRectangleCover(rectangles: List[List[int]]) -> bool:
    X1, Y1 = float('inf'), float('inf')
    X2, Y2 = -float('inf'), -float('inf')

    actual_area = 0
    # 哈希集合,记录最终图形的顶点
    points = set()
    for x1, y1, x2, y2 in rectangles:
        X1, Y1 = min(X1, x1), min(Y1, y1)
        X2, Y2 = max(X2, x2), max(Y2, y2)

        actual_area += (x2 - x1) * (y2 - y1)
        # 先算出小矩形每个点的坐标
        p1, p2 = (x1, y1), (x1, y2)
        p3, p4 = (x2, y1), (x2, y2)
        # 对于每个点,如果存在集合中,删除它;
        # 如果不存在集合中,添加它;
        # 在集合中剩下的点都是出现奇数次的点
        for p in [p1, p2, p3, p4]:
            if p in points: points.remove(p)
            else: points.add(p)

    expected_area = (X2 - X1) * (Y2 - Y1)
    if actual_area != expected_area:
        return False

    return True

  这段代码中,我们用一个points集合记录rectangles中小矩形组成的最终图形的顶点坐标,关键逻辑在于如何向points中添加坐标:

  如果某一个顶点p存在于集合points中,则将它删除;如果不存在于集合points中,则将它插入。

  这个简单的逻辑,让points集合最终只会留下那些出现了 1 次或者 3 次的顶点,那些出现了 2 次或者 4 次的顶点都被消掉了。

  那么首先想到,points集合中最后应该只有 4 个顶点对吧,如果len(points) != 4说明最终构成的图形肯定不是完美矩形。

  但是如果len(points) == 4是否能说明最终构成的图形肯定是完美矩形呢?也不行,因为题目并没有说rectangles中的小矩形不存在重复,比如下面这种情况:

 

代码

 

  下面两个矩形重复了,按照我们的算法逻辑,它们的顶点都被消掉了,最终是剩下了四个顶点;再看面积,完美矩形的理论坐标是图中红色的点,计算出的理论面积和实际面积也相同。但是显然这种情况不是题目要求完美矩形。

  所以不仅要保证len(points) == 4,而且要保证points中最终剩下的点坐标就是完美矩形的四个理论坐标,直接看代码吧:

def isRectangleCover(rectangles: List[List[int]]) -> bool:
    X1, Y1 = float('inf'), float('inf')
    X2, Y2 = -float('inf'), -float('inf')

    points = set()
    actual_area = 0
    for x1, y1, x2, y2 in rectangles:
        # 计算完美矩形的理论顶点坐标
        X1, Y1 = min(X1, x1), min(Y1, y1)
        X2, Y2 = max(X2, x2), max(Y2, y2)
        # 累加小矩形的面积
        actual_area += (x2 - x1) * (y2 - y1)
        # 记录最终形成的图形中的顶点
        p1, p2 = (x1, y1), (x1, y2)
        p3, p4 = (x2, y1), (x2, y2)
        for p in [p1, p2, p3, p4]:
            if p in points: points.remove(p)
            else:           points.add(p)
    # 判断面积是否相同
    expected_area = (X2 - X1) * (Y2 - Y1)
    if actual_area != expected_area:
        return False
    # 判断最终留下的顶点个数是否为 4
    if len(points) != 4:       return False
    # 判断留下的 4 个顶点是否是完美矩形的顶点
    if (X1, Y1) not in points: return False
    if (X1, Y2) not in points: return False
    if (X2, Y1) not in points: return False
    if (X2, Y2) not in points: return False
    # 面积和顶点都对应,说明矩形符合题意
    return True

  这就是最终的解法代码,从「面积」和「顶点」两个维度来判断:

  1、判断面积,通过完美矩形的理论坐标计算出一个理论面积,然后和rectangles中小矩形的实际面积和做对比。

  2、判断顶点,points集合中应该只剩下 4 个顶点且剩下的顶点必须都是完美矩形的理论顶点。

  说实话,如果没做过,这种特性真不是一时半会能想到的,但是看过一遍没问题了,你学会了吗?

责任编辑:xj

原文标题:这道「完美矩形」给我整不会了…

文章出处:【微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分