×

金属箔电阻的内在,你见过吗?

消耗积分:2 | 格式:pdf | 大小: | 2021-03-08

吴湛

分享资料个

从 1962 年物理学家 Felix Zandman 博士发明第一颗箔电阻起,时间已经过去快六十年,Bulk Metal® Foil 箔电阻科技在要求高精度,高稳定性,和高可靠性的应用方面仍然远远超越其他电阻科技,威士精密测量集团提供多种规格和包装的精密箔电阻产品,以满足各种应用需求。美国专利 4176794 是美国 Angstrohm 公司申请的金属箔电阻的专利。

 

 

以色列的 Vishay(威世精密测量集团,包括被 Vishay 收购的 AE)在精密金属箔电阻技术上具有极大的优势,其研发的 Z-Foil 金属箔电阻技术在各项技术指标上大幅提高,如在 -55℃~+125℃温度范围内、+25℃参考温度下,Z 箔电阻具有±0.2 ppm/°C 典型 TCR。

 

 

电阻的阻值会受到各种“应力”影响而发生改变,离开稳定性的高精度是没有意义的。举个例子,电阻出厂时的精度是±0.01%,为这个精度我们支付了昂贵的费用,但在几个月的存储或者几百小时的负载后阻值可能变化超过±300ppm 甚至更多。另一种最常见的情况是电阻在来料检验的时候在标称的精度范围以内,焊接到 PCB 后就超出了标称的精度范围。还有比如潮湿,静电等都会导致电阻的阻值产生不可逆的变化。
 
我们要强调的是,稳定性应该放在首位来考虑,而不是片面的追求高精度。
 
金属箔电阻是通过真空熔炼形成镍铬合金,然后通过滚碾的方式制作成金属箔,再将金属箔黏合在氧化铝陶瓷基底上,再通过光刻工艺来控制金属箔的形状,从而控制电阻。金属箔电阻是目前性能可以控制到最好的电阻。
 
金属箔电阻因其采用特殊金属箔材料,在生产过程又进行严格控制把关,使它的性能方面远远高出其他电阻,可以毫不夸张的说高精密金属箔电阻是一种超精密的电阻器。那么这种电阻有什么优点和特征呢?一个好的精密电阻,必须具备老化小、温漂小、偏差小的特点,同时最好具备可靠性高、功率余量大温升小、噪音低、串联电感分布电容小、电压系数小、焊接、振动及拉伸不容易变化等。金属箔电阻几乎具备了所有这些优点。
 
当然,与基准相关的最重要的参数,是老化,其次是温度系数。至于电阻上标的是 1%、0.1%、还是 0.01%,这个是偏差而已,并不直接代表“精密”程度。只有在不同的温度条件下,并在很长的使用时间之后,仍然具备高稳定性,才代表真正的“精密”。
 
“老化”是什么?老化就是长期稳定性,也就是在常温常压下,放在货架子上,经过比较长的时间(比如 1 年),电阻的变化。老化因此也常用每年变化多少个 ppm 来表示。老化因此是一个不可逆的过程,就像人衰老一样,再也回复不到原来的了。
 
电阻温度系数(temperature coefficient of resistance 简称 TCR)表示电阻当温度改变 1 度时,电阻值的相对变化,单位为 ppm/℃(即 10E(-6)/℃)。“温漂”又是什么?温漂就是电阻的阻值随温度而变化。由于一般的电阻温漂不大,因此常用每度变化多少个 ppm 来表示,这就是温度系数。假如一个电阻的温度系数是+100ppm/℃,就是温度每升高 1 度,电阻增大 0.01%。同样,负温度系数表示电阻的阻值随温度的升高而减少。说温度系数的时候有的时候省略后面的 /℃,例如某电阻的温度系数是 8ppm,意思就是 8ppm/℃。
 
将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低 TCR、长期稳定性、无感抗、无 ESD 感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。这些功能有助于提高系统稳定性和可靠性,精度、稳定性和速度之间不必相互妥协。为获得精确电阻值,大金属箔晶片电阻可通过有选择地消除内在“短板”进行修整。当需要按已知增量加大电阻时,可以切割标记的区域,逐步少量提高电阻,如图。

 

 

贴片片状金属箔内部结构如图所示。

 


特性 1、温度系数(TCR) 
“为何需要用非常低温度系数的电阻?” 这是在评估电路系统性能和成本的时候可会问的一个问题。答案是由于多个电路系统组合。以下页面讨论对精密模拟电路非常重要的金属箔电阻的 10 个不同的独立技术性能。当每一个性能被独立清晰地讨论时,很多电路要求这些性能的特定组合,通常,所有的性能会被要求在同一个电阻装置中测试。比如说,某个性能的测试要求使用一个运算放大器。
 
在运算放大器中,增益是由反馈电阻对输入电阻的比例确定的。不同放大器的共模抑制比是基于四个电阻的比例确定。在两种情况下,这些电阻比例的任何改变都会直接影响电路的性能。这些比例可能由于电阻不同的温度系数,在经历不同的加热影响而改变(无论是内部还是外部)。不同的环境温度变化跟踪,对不同的相位输入或者高频信号的响应时间,由于不同功率水平产生的微分焦耳加热, 超出设计寿命后阻值改变量的不同等等。所以我们很容易看到很多电路都依靠很多相关应用的稳定性能是很平常的情况。— 所有都在同一时间,同一装置上。Bulk Metal® Foil 金属箔电阻科技是唯一一种在同一电阻装置中提供所有这些严密特性的电阻科技。低噪音是箔电阻科技固有的,可以适合低噪音要求的特殊应用场合。所有这些特性都是箔电阻科技固有的。并且所有箔电阻产品都自动地具有这些特性。
 
解决这些问题的方案就是使用低温度系数的电阻以保持使温度变化的影响降到最低。
 
初始温度系数
两个可预计的和相对的物理现象,电阻内部合金的合成结构和它的基质是 Bulk Metal® Foil 金属箔电阻获得低温度系数的关键因素。
 
金属箔电阻的温度系数通过匹配两种相反的作用效果来实现。- 由于温度的增加引起内部阻抗的增加 vs. 压缩 - 阻抗的减小与同一温度增加相关。两种作用同时发生引起一个通常低的,可以预计的,可重复的,可控的温度系数结果。
 
由于威士精密集团的 Bulk Metal® Foil 金属箔电阻设计,这种温度系数 TCR 会自动实现,不用筛选,不用注意阻值或者制造日期 — 甚至是很多年以后!
 
改进的金属箔电阻 Bulk Metal® Z-Foil 温度系数可以做到 ±0.2 ppm/°C


箔电阻科技每过几年就会进步,温度系数会有重大改进。
 
图 1 显示威士箔电阻工厂用于生产金属箔电阻的各种合金的典型温度系数特性。
 
初始的 C 合金展示的是在冷端部分是一条对温度负响应的的正斜率的弦,热端部分是一条对温度的正斜率的弦。

 

 
接下来是 K 合金,在冷端部分是一条对温度的负的弦的斜率,热端部分是一条对温度的正的弦的斜率。事实上,它提供了一条温度系数曲线近似 C 合金的一半。
 
最新的发展是 Z 合金和 Z1 合金箔电阻科技,突破了类似于 K 合金的箔技术,提供的温度系数曲线比 C 合金好很多倍,比 K 合金好五倍。
 
利用这种技术,可以做出非常低温飘的电阻,并且这种电阻对温度的反馈接近于零。


这种技术的发展的结果是,相对于以前的技术,以及其他电阻技术,这种技术极大地提高了电阻温飘性能。
 
典型温度系数 TCR
箔电阻典型温飘被定义为阻值改变的相关曲线 vs 温度曲线(RT) curve, 单位为 ppm/°C (百万分之一每摄氏度)。斜率定义在 0 °C to + 25 °C 和 + 25 °C to + 60 °C (仪器温度范围); - 55°C to + 25 °C 和 + 25 °C to+ 125 °C (军标范围)。
 
这些规定的温度和定义的典型温飘弦的斜率适用于所有阻值电阻包括低阻值电阻。注意,尽管如此 , 除了四脚的开尔文连接低阻值电阻,引脚阻值和关联温飘可能必须考虑。所有类型引脚阻值和温飘的测量是以引脚的 1/2” 为参考点进行的。低阻值电阻的温飘预期增加值请和我们的应用工程部门联系。
 
跟踪温飘 
“跟踪温飘” 是两个或者更多电阻的稳定性的比较。当超过一个电阻在同一个基质上时, (如图 2),假设是两个分立电阻,温飘跟踪比温飘更好描述同一批的不同科技制作的电阻阻值随温度的增加或者减少,阻值跟踪比率受外部热量的影响。(如环境温度的上升或者临近的温度更高的元件) 也包括内部热量(由于功率损耗产生的自热)。在同一温度下,电阻可能经过筛选,具有好的温飘。但是变化是由于不同的内部温度不同(比如:功率损失不同) 或者不同的位置温度不同(比如,来自周围元件的不同热量) 会逐层地跟踪,并产生额外的温度 - 关联错误。因此在精密应用领域,低的绝对温飘是非常重要的。
 
最好的模拟设计将被用于低绝对 TCR 电阻的基础,因为它可以使得环境温度和自热温度对电阻的影响最小化。
 
这对于高温飘的电阻> 5 ppm/°C 是不可能的。即使电阻具有很好的内部跟踪温飘小于 2 ppm/°C。
 

 

特性 2 :电阻功率系数 (PCR) 
电阻温飘 TCR 通常会给出一个温度范围,这个温度范围是通过测量阻值在两种不同环境温度情况下获得: 室内温度和冷却空间温度或者是高温空间温度。阻值改变的比率和不同温度会产生一条斜率曲线∆R/R = f (T) 。这个斜率通常表达为百万分之一每摄氏度 T (ppm/°C)。在这种情况下,统一了测量阻值的温度标准 . 实际情况中,无论如何,电阻温度的上升也是一部分,由于电阻加载功率部分功率会浪费在产生自热 。根据焦耳效应,当电流通过电阻时,电阻会产生相关的热量,因此,对于精密电阻,独立的温飘 TCR 不能表示实际的阻值改变量,因此,另外一种参数被用于描述包含这种固有的电阻特性–阻值功率系数(PCR)。功率系数(PCR )是表示每一百万分之一每瓦或者额定功率下的一百万分之一。Z-foil 金属箔功率电阻,额定功率下的功率系数 PCR 是 5ppm 典型值,或者 4ppm 每瓦典型值。例如:金属箔功率电阻,温飘 TCR 是 0.2 ppm/ºC 功率系数 PCR 是 4 ppm/W, 温度改变量 50 ºC (从 + 25 ºC 到 + 75 ºC) 0.5 W 产生的∆R/R 是 50 x 0.2 + 0.5 x 4 = 12 ppm 改变量。
 
特性 3:热稳定性 
电阻通电压后,产生自热。箔电阻低温飘和功率因素使自热对电阻影响最小。但是为了达到高精密的效果,电阻对环境条件改变或者其他刺激因素的快速响应也很必要 。当功率改变,人们希望电阻的值可以快速调整到稳定值。快速的热稳定性在一些应用中很重要。电阻必须根据内外因素的变化迅速达到稳定的标称值,并且偏差在几百万分之一的数量级。
 
多数的电阻科技可能花几分钟时间才可以达到它的热稳定状态,箔电阻可以立即达到稳定状态,并且在一秒钟以内,阻值偏差在几百万分之一的数量级内。电阻根据环境温度和功率的改变准确响应。电阻加功率后产生自热,引起电阻元素上产生机械应力结果导致逆温现象。不管怎样,箔电阻的性能都远远超过其他电阻科技。(如图 3)
 

 

特性 4:阻值精度 
为何人们要选用非常精密的电阻?一个电路系统或者一个装置或者一个特殊的电路必须运行预定的一段时间。并且在服务期限的末期,它还可以正常工作。在这个服务寿命期间,它可能已经受到不利条件的影响,因此电阻可能不再保持原来的精度。一个原因是给电阻指定一个比预期到电阻寿命末期精度更严格并且可跟踪的精度,以允许电阻服务期间精度漂移在可以接受的范围内。另外一个原因是对将电阻精度的要求比对其他电阻原件的要求更加严格。
 
Bulk Metal Foil 金属箔电阻通过在光刻电阻箔片上选择性的刻出各种不同的调节点,精度可以做到 0.001% , (如表 4)。它们提供可预测的逐步的增加阻值达到期望的精度水平。调阻图案在这些调节点上进行,改变电流通过更长的路径,因此阻值是按特殊的百分比增加。调阻工艺在不同的位置精密的增加阻值。所以蚀刻格子内部分区域保持其可靠性和无噪音。在完好的调阻区域,调阻通过细微的变化来达到最终的阻值,精度可以达到 0.001%,最终精度 0.0005%(5ppm),这是调阻分辨率(如图 5)。

 


特性 5:负载寿命稳定性 
为何设计人员关注加负载后的稳定性?负载寿命稳定性可以典型的说明电阻的长期可靠性能。军标测试要求 10,000 小时内有限数量的飘移和有限数量的失效率。精密箔电阻有最严格的测试要求。无论是否经过军标测试,箔电阻的负载寿命稳定性无可比拟的,并且确保长期正常使用。
 
箔电阻具有如此稳定性能是由于它本身的材料结构。Bulk Metal® Foil 金属箔和高纯度的氧化铝基质。例如, S102C 和 Z201 电阻 的功率为 0.3 W,125 °C 时,2000 小时负载寿命测试,阻值最大改变量 150 ppm 并且 10,000 小时负载寿命测试,阻值最大改变量 500 ppm (看表 6 和表 7 ) 相反,功率减小使得阻值改变量减小,降低了箔电阻内部电阻元素的温度升高。表 6 表明箔电阻由于负载寿命测试产生的飘移。
 
图 7 说明由于功率降低的负载寿命测试产生的漂移。降低环境温度对负载寿命测试结果会产生影响,图 8 说明在额定功率下,不同环境温度的负载寿命测试产生的漂移。图 9 说明在低功率,低温条件下 S102C 箔电阻的负载寿命测试结果。
 
我们的工程人员确保金属箔电阻的稳定性经过几种试验和测试。图 10 显示金属箔电阻在 29 年中的稳定性测试结果。50 个 S102C 10 kΩ电阻样品在 70 °C 温度环境, 0.1 W 功率全部持续测试。平均阻值改变量只有 60ppm。

 

 

图 11 是客户提供的 VHP101 系列箔电阻超过 8 年的货架寿命测试结果。平均阻值改变量不超过 1ppm。
 
为评估负载寿命稳定性,必须提到有两个参数,功率和温度,对于给定的电阻可以合并一个参数。如果电阻在稳定状态确定温度上升, 这个上升温度可以加进环境温度内,它们表现为组合温度,(负载引进温度+环境温度)。例如, S102C 系列威士箔电阻加功率时每 0.1 W 升温 9 °C。这会导致以下的计算结果:
 
●  如果 T = 75 °C, P = 0.2 W, t = 2000 小时


●  自热= 9 °C x 2 = 18 °C


●  18 °C 上升温度 + 75 °C 环境温度= 93 °C ∆R


●  R max = 80 ppm,如图 12 的曲线
 
图 12 说明,对于给定的持续负载寿命测试,因组合温度的增加产生的电阻漂移情况。正如以上解释的,组合温度包括因功率加载引起的温度上升和环境温度。曲线表示最大漂移。

 

 
特性 6: 快速响应时间 
电阻等效电路,如图 13,组合了电阻电感和电容,电阻可以被看作 R/C 电路,滤波器或者电感,取决于它们的几何形状。线绕电阻,电抗由线圈和绕线形成的螺旋空隙产生。图 14 说明由于持续增加绕线圈数以增加阻值,引起电容和电感的增加 。这种组装科技试图减小线绕电阻的电感,但是效果有限。另一方面,在平面形的电阻中,比如 Bulk Metal® Foil 金属箔电阻,电阻路径图案有意设计成为平行的几何直线以抵消电抗。
 
图 15 说明一种典型的蛇形的平面电阻阻值路径图 。临近的反方向电流较小了相互的电感,也减小了电容。

 


电感和电容对工作频率产生成比例的电抗,它改变了电阻的效果和电流与电压在电路中的相位。
 
电感和电容产生的电抗会干扰输入信号,尤其在脉冲设备里 . 图 16 电流对电压脉冲响应的比较。金属箔电阻的响应很快,线绕电阻响应慢。
 
这里脉冲宽度是十亿分之一秒,图上已显示线绕电阻会使信号严重失真,金属箔电阻分段完全再现了信号。
 
在频率设备中, 这种扭曲反应会引起明显的阻值改变(阻抗)并引起频率改变。图 17 说明金属箔电阻的在不同频率下交流阻抗对直流阻抗的曲线。金属箔电阻 在 100Ω范围内,频率 100M,具有很好的响应。1M 频率内所有阻值金属箔电阻都具有很好的响应。其他科技电阻的性能曲线比金属箔电阻的曲线会更偏移。(特别是线绕电阻)。

 

 
特性 7: 噪音: “听出不一样” 
由于声音再现的需求越来越多,电路元件的选择变得更为严格,信号线路中的电阻选择更关键。基于低水平输入信号和高增益放大器的测量仪器在测量微伏特范围的信号时,不能接受微伏特水平的背景噪音。尽管音频电路,信号的纯正最重要,很明显的要使用无噪音的电子元件。其他工业和科技也同样关注这个特性。
 
电阻由于它自身的结构,可以是噪音来源。这种无意的信号增加是可以测量的并且独立于已经存在的基本信号。图 19 和图 20 电阻噪音对基本信号的作用。由可导性的材料黏合在绝缘基质材料中制造的电阻最容易产生噪音。碳膜电阻和厚膜电阻, 电流传导发生在基质材料和电阻材料之间的接触点,这些接触点对电流传导产生很大的阻碍作用,是噪音的来源。这些位置对任何因不匹配产生的形变,潮湿产生的变形,机械应力,和电压输入水平都很敏感。在电流通过基质时,对这些外部影响的响应是不需要的信号。图 20 说明电流路径。

 

 

金属合金制成的电阻, 比如金属箔电阻, 产生的噪音最小。电流通过金属合金的内部微粒边界导通电路。微粒间的电流路径经过一个或者更多的金属晶体包括多层,更长的路径穿过分界线,减少了噪音产生的几率。图 22 说明电流路径。
 
另外,金属箔电阻的光刻和制造科技使箔电阻具有比其他电阻结构更一致的电流路径。螺旋形结构的电阻,会有更大的几何形变,产生更多的噪音信号。金属箔电阻比其他科技的电阻有最低的噪音。金属箔电阻的噪音水平几乎无法测出。通过选择电阻,前置放大器可以获得纯正的信号。威士金属箔电阻为低噪音音频产品提供最佳的性能。
 

 

特性 8: 热电势 EMF 
两个不同的金属连接,加热会产生电压,因为金属的感应水平不同。这种由温度引起的电测压力,称为热电势,通常以微伏特表示。热电势的一个有利作用是用热电偶和微伏特记测量温度。
 
在电阻中, 热电势被认为是对纯电阻的寄生干扰。(特别是对低阻值直流电阻)。经常是由于电阻结构中的不同材料产生,特别是在电阻材料和引脚材料的连接点上。电阻的热电势性能可以通过两个连接点之间的内部温度。电阻材料上不对称的功率分布, 金属材料分子复杂的活动差异降低。
 
威士金属箔电阻的其中一个特点是低热电势设计。扁平的桨状引脚(直插设计)紧密的连接电阻箔片,由此热传导最大化,温度变动最小,金属箔电阻设计成消除功率而不产生热点效应,引脚材料跟电阻材料协调 . 这些设计做出低热电势的电阻。
 
图 23 和图 24 各种特殊设计使金属箔电阻具有极低的热电势。

 

 


理由 9: 静电放电负荷 (ESD) 
静电放电负荷(ESD)定义为 不同电势的物体之间快速地转移电荷–无论是直接接触,电弧或者电磁感应–趋向于达到电势平衡。人体感应的静电放电负荷 ESD 是 3000 V, 所以任何超过这个电压的静电放电负荷都可被人体感觉到。因为持续的高压伏特数小于一百万分之一秒,人体的体积较大,这种能量在人体很快传播,变得很小。对人体来说,静电放电负荷是无害的。但是这种静电放电负荷通过很小的电子元件时,相对的能量比较密集,3000V 甚至 500V 的静电放电符合足以破坏很多电子元件。
 
静电放电负荷的危害一般分为 3 种: 
● 参数失效–静电放电负荷 ESD 事件可能改变电子元件的阻值,引起电阻阻值精度漂移。. 这种危害不会直接影响电阻功能,因此参数失效可能存在于正常工作的电阻。
 
● 灾难性的破坏–静电放电负荷 ESD 事件引起电子元件立即停止工作, 这个可能发生在几个静电放电负荷脉冲之后,可能是有很多原因造成,比如人体静电放电负荷或者仅仅是原来存在的静电。
 
● 潜在的损坏–静电放电负荷 ESD 事件电子元件未被察觉的中度的损坏,电子元件还能正常工作 . 尽管如此,电子元件的负载寿命已经极大的减少,因为后续工作期间的应力可能引起电子元件更多的损害,使电子元件在寿命期间失效,这种潜在的损坏是最需要关注的,因为这种损坏不能被察觉或者测量出来。
 
电阻对静电的敏感跟它的体积有关,体积越小的电阻,分散静电脉冲能量的空间越小。区域的电阻材料上的这种能量集中会产生热量上升,导致不可逆转的破坏。日益增长的小型化的趋势,电子元件,包括电阻, 使得它们更容易受到静电损害。
因此,Bulk Metal® foil 金属精密箔电阻的比薄膜电阻在抗静电方面更有优势,主要由于金属箔电阻的电阻材料更厚,(金属箔比薄膜厚 100 倍)因此金属箔比薄膜的耐热能力更高。
 
薄膜电阻材料是由微粒构成。(通过蒸发或者喷溅工艺), 金属箔合金类似于晶体结构,通过热和冷的揉压工艺制作。
 
测试证明,贴片金属箔电阻能够抗静电至少 25,000 V (有资料证明), 薄膜和厚膜贴片电阻只能抗 3000 V 静电(实际的数据可能更低)。如果设备要求使用抗巨大静电脉冲电压的电阻,金属箔电阻是最好的选择。
 
特性 10: 测不到的电压系数 
正如我们在电阻噪音部分提到的,电阻阻值可能由于加载电压而改变。电压系数描述阻值对电压的变化而改变的情况。不同结构的电阻有不同的电压系数。举个比较极端的例子,电压系数的作用在碳膜电阻中很显著,阻值会随着加载电压变化而发生明显改变。Bulk Metal® Foil 金属箔电阻材料对电压波动不敏感,设计人员可以依靠箔电阻在各种电压水平的电路中取得相同的阻值。金属箔电阻合金固有的性能提供技术不能测量的电压系数。
 
一个电阻集中所有特性
10 个技术理由详细介绍了箔电阻内在的特殊设计,而非制作工艺或筛选方式。这种特殊性能的组合是其他电阻科技不具备的。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !

'+ '

'+ '

'+ ''+ '
'+ ''+ ''+ '
'+ ''+ '' ); $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code ==5){ $(pop_this).attr('href',"/login/index.html"); return false } if(data.code == 2){ //跳转到VIP升级页面 window.location.href="//m.obk20.com/vip/index?aid=" + webid return false } //是会员 if (data.code > 0) { $('body').append(htmlSetNormalDownload); var getWidth=$("#poplayer").width(); $("#poplayer").css("margin-left","-"+getWidth/2+"px"); $('#tips').html(data.msg) $('.download_confirm').click(function(){ $('#dialog').remove(); }) } else { var down_url = $('#vipdownload').attr('data-url'); isBindAnalysisForm(pop_this, down_url, 1) } }); }); //是否开通VIP $.get('/article/vipdownload/aid/'+webid,function(data){ if(data.code == 2 || data.code ==5){ //跳转到VIP升级页面 $('#vipdownload>span').text("开通VIP 免费下载") return false }else{ // 待续费 if(data.code == 3) { vipExpiredInfo.ifVipExpired = true vipExpiredInfo.vipExpiredDate = data.data.endoftime } $('#vipdownload .icon-vip-tips').remove() $('#vipdownload>span').text("VIP免积分下载") } }); }).on("click",".download_cancel",function(){ $('#dialog').remove(); }) var setWeixinShare={};//定义默认的微信分享信息,页面如果要自定义分享,直接更改此变量即可 if(window.navigator.userAgent.toLowerCase().match(/MicroMessenger/i) == 'micromessenger'){ var d={ title:'金属箔电阻的内在,你见过吗?',//标题 desc:$('[name=description]').attr("content"), //描述 imgUrl:'https://'+location.host+'/static/images/ele-logo.png',// 分享图标,默认是logo link:'',//链接 type:'',// 分享类型,music、video或link,不填默认为link dataUrl:'',//如果type是music或video,则要提供数据链接,默认为空 success:'', // 用户确认分享后执行的回调函数 cancel:''// 用户取消分享后执行的回调函数 } setWeixinShare=$.extend(d,setWeixinShare); $.ajax({ url:"//www.obk20.com/app/wechat/index.php?s=Home/ShareConfig/index", data:"share_url="+encodeURIComponent(location.href)+"&format=jsonp&domain=m", type:'get', dataType:'jsonp', success:function(res){ if(res.status!="successed"){ return false; } $.getScript('https://res.wx.qq.com/open/js/jweixin-1.0.0.js',function(result,status){ if(status!="success"){ return false; } var getWxCfg=res.data; wx.config({ //debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开,参数信息会通过log打出,仅在pc端时才会打印。 appId:getWxCfg.appId, // 必填,公众号的唯一标识 timestamp:getWxCfg.timestamp, // 必填,生成签名的时间戳 nonceStr:getWxCfg.nonceStr, // 必填,生成签名的随机串 signature:getWxCfg.signature,// 必填,签名,见附录1 jsApiList:['onMenuShareTimeline','onMenuShareAppMessage','onMenuShareQQ','onMenuShareWeibo','onMenuShareQZone'] // 必填,需要使用的JS接口列表,所有JS接口列表见附录2 }); wx.ready(function(){ //获取“分享到朋友圈”按钮点击状态及自定义分享内容接口 wx.onMenuShareTimeline({ title: setWeixinShare.title, // 分享标题 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享给朋友”按钮点击状态及自定义分享内容接口 wx.onMenuShareAppMessage({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 type: setWeixinShare.type, // 分享类型,music、video或link,不填默认为link dataUrl: setWeixinShare.dataUrl, // 如果type是music或video,则要提供数据链接,默认为空 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ”按钮点击状态及自定义分享内容接口 wx.onMenuShareQQ({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到腾讯微博”按钮点击状态及自定义分享内容接口 wx.onMenuShareWeibo({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); //获取“分享到QQ空间”按钮点击状态及自定义分享内容接口 wx.onMenuShareQZone({ title: setWeixinShare.title, // 分享标题 desc: setWeixinShare.desc, // 分享描述 link: setWeixinShare.link, // 分享链接 imgUrl: setWeixinShare.imgUrl, // 分享图标 success: function () { setWeixinShare.success; // 用户确认分享后执行的回调函数 }, cancel: function () { setWeixinShare.cancel; // 用户取消分享后执行的回调函数 } }); }); }); } }); } function openX_ad(posterid, htmlid, width, height) { if ($(htmlid).length > 0) { var randomnumber = Math.random(); var now_url = encodeURIComponent(window.location.href); var ga = document.createElement('iframe'); ga.src = 'https://www1.elecfans.com/www/delivery/myafr.php?target=_blank&cb=' + randomnumber + '&zoneid=' + posterid+'&prefer='+now_url; ga.width = width; ga.height = height; ga.frameBorder = 0; ga.scrolling = 'no'; var s = $(htmlid).append(ga); } } openX_ad(828, '#berry-300', 300, 250);