william hill官网 流量预测对网络规划、舆情管理等任务具有重要意义,针对线性预测模型无法预测非线性关系、非线性预测模型的特征工程过于复杂的问题,利用历史时间序列作为特征,建立一种基于不同算法的集成模型以预测william hill官网 发帖量。运用差分自回归移动平均、长短期记忆神经网络、 Prophet以及梯度提升决策树4种模型分别对时间序列进行预测,参照加权投票法的思想,各模型投票选出时间序列单位下密度较大的预测值区间,依据各模型预测值所处区间的密度大小对各预测值进行权重分配,然后通过加权平均得到最终的预测结果。实验结果表明,与算术平均模型、基于均方根误差的加权平均模型相比,该模型预测结果的RMSE值以及相对误差值更小。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !