传统的海洋锋识别方法依赖于梯度阈值,其将梯度值大于设定阈值的海域视为存在海洋锋,但梯度阈值法存在阈值依赖人为设定且标准不统一,以及复杂多样的海洋锋无法用单一阈值进行准确识别的问题。为此,提出种融合深度学习的自适应梯度阈值判别方法。对海温梯度图进行标注,通过 Mask r-CNN训练得到海洋锋像素级识别模型,统计每一类锋特有的梯度值分布作为该类锋的基准梯度阈值,并基于该阈值对像素级的锋面识别结果做精细化调整,对锋面识别结果精度进行量化,以提高自适应锋面调整过程的可靠性。实验结果表明,与传统梯度阈值法及单一的深度学习结果相比,该方法可以实现精细的海洋锋识别,且具有良好的独立性和完整性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !