特征不平衡问题是影响神经网络检测效率的关键因素。针对 Mask r-CNN中的特征不平衡问题,提出种基于全局特征金字塔网络(GFPN)的信息融合方法。通过将GFPN产生的不同大小特征相融合,生成包含全局语义信息的特征网络,并采用反向过程对原始特征层进行重新标度,从而使得每个特征层均含有全局语义信息。实验结果表明,与原始基于 Mask r-CNN的方法相比,该方法的检测精度提升4-6个百分点,而检测时间仅增加0.112s。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !