针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN。利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN模型与 DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.9735,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !