深度解读S3C2410A的嵌入式系统的U-Boot移植

电子说

1.3w人已加入

描述

0 引 言

ARM嵌入式处理器已被广泛应用于消费电子产品、无线通信、网络通信和工业控制等领域。其中,ARM9的芯片更是以其低价格、低功耗、高性能在手持设备中占据着重要市场。在嵌入式操作系统中,Linux,Vxworks,WinCE三足鼎立,其中Linux由于其开源性、稳定性、安全性、可裁减性更是一支独放。在嵌入式系统中,如何实现在ARM9平台下Linux操作系统的引导工作是嵌入式技术开发的重要环节。

1 嵌入式系统的软件组成

1.1 系统的软件组成

嵌入式的软件系统主要由Bootloader、操作系统、文件系统、应用程序等组成。其中,Bootloader是介于硬件和操作系统之间的一层,其作用就好像PC机中的BIOS。系统加电运行后,由系统自动加载。通过这段程序,可以初始化硬件设备,建立内存空间的映射图,从而将系统的硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好环境。对于一个嵌入式系统,通常BootLoader是依赖于硬件而实现的。对于不同类型的嵌入式芯片、不同的操作系统和外围接口都需要重新移植、修改和编译Bootloader。

1.2 U-Boot分析

嵌入式Linux系统中常用的Bootloader引导程序有U-Boot,redboot,blob和vivi等,其中U-Boot遵循GPL条款的开放源码项目,功能最为强大;U-Boot对PowerPC系列处理器支持最丰富,同时还支持MIPS,x86,ARM,Nios,XScale等诸多常用系列的处理器;U-Boot引导程序分为Stage 1和Stage 2两大部分,Stage 1中主要包括设备初始化、中断设置、时钟设置和存储器初始化等工作,并且采用汇编语言实现,而一些通用功能大多采用C语言实现,放在Stage 2中。

2 U-Boot的启动分析

Stage 1的代码在CPU/arm920t/start.s中定义,它包括从系统上电后在0x00000000地址开始执行的部分。这部分代码系统启动后,从NAND FLASH自动加载到SDRAM中,它包括对S3C2410A中寄存器的初始化和将U-Boot的Stage 2代码从FLASH拷贝到SDRAM。Stage 2的起始地址是在Stage1代码中指定的。被复制到SDRAM后,就从第一阶段跳到这个入口地址,开始执行剩余部分代码。第二阶段主要是对内存的分配,对NAND FLASH以及对外围设备的初始化,其代码在lib-arm/board.C中。启动的流程分析如图1所示。

无线通信

(1)跳转到C语言程序之后,首先定义初始化函数表,程序在lib-arm/board.e中,如下所示:

无线通信

(2)初始化FLASH设备和显示FLASH设备信息;

(3)初始化系统内存分配函数;

(4)如果目标系统拥有NAND设备,则初始化NAND设备;

(5)初始化显示设备;

(6)初始化网络设备,填写IP地址、MAC地址等信息;

(7)开启中断处理;

(8)进入命令循环,接收用户从串口的命令输入。

3 U-Boot的移植方法

本文选用交叉编译环境arm-linux-gcc-2.95.3,选用U-Boot-1.1.4版本作为移植平台。为了使U-Boot支持新的开发板,一种简便的做法是在U-Boot已经支持的开发板中选择一种与目标板接近的,在其基础上进行修改。这里选用的是smdk2410的配置。

3.1 修改cpu/arm920t/start.S文件

Start.s是采用汇编语言编写的U-Boot程序入口代码,完成对底层硬件的初始化,其中有一个很重要的功能是从NAND FLASH中把Stage 2阶段的代码复制到SDRAM中。在此阶段,涉及到对NANDFLASH的读操作,在U-Boot中,没有对NANDFLASH读操作的驱动,采用以下方法实现:

无线通信

通过调用board/smdk2410/nand_read.C中的nand_read_11函数将Stage 2阶段的代码复制到ram中。

3.2 修改board/smdk2410目录下文件

(1)增加对NANDFLASH的读驱动nand_read.c

无线通信

(2)在smdk2410.C文件中添加对NANDFLASH初始化的程序

在此主要是对主板的GPIO的一些设置,并加上对NANDFLASH初始化程序。

无线通信

无线通信

(3)在该目录下的Makefile文件中添加nand_read.C文件的编译

OBJS:=smdk24 10.o FLASH.o nand_read.o

3.3 在include文件中设置NAND FLASH硬件参数

在/linux/mtd/nand_ids.h中设置参数:

无线通信

3.4 编译与运行

配置好以后,进入U-Boot主目录,重新编译U-Boot代码,运行命令:

(1)查看交叉编译器的版本号

arm-linux-gcc-v

(2)清除生成的连接

Make distclean

(3)编译make smdk2410_config

(4)make CROSS-COMPILE=arm-linux-编译成功后,将生成三个文件:

u-boot:ELF格式的文件,可以被大多数Debug程序识别。

u-boot.bin:二进制bin文件,纯碎的U-Boot二进制执行代码,不保存ELF格式和调试信息。这个文件用于烧到用户的开发板中。

u-boot.srec:Motorola S-Record格式,可以通过串口下载到开发板中。

将得到的u-boot.bin文件借助于FLASH芯片烧写工具,通过JTAG口下载到目标板后,检查U-Boot能否正常工作。如果能从串口输出正确的启动信息,就表明移植基本成功。

4 结 语

目前笔者移植的U-Boot已经能稳定地运行在开发板上。U-Boot引导程序是嵌入式Linux系统软件开发中的一个重要环节。在此通过分析U-Boot的代码结构和启动过程,并针对开发板系统的硬件资源,通过分析与调试,实现了U-Boot的移植,并且能够引导嵌入式Linux内核和文件系统,为今后进一步开发奠定了坚实的基础。

编辑:jq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分