将自然语言转化成数据库可以执行的查询语句,是目前智能交互和人机对话系统的核心难题,也是新型供电列车大数据运用支撑平台对接应用平台及建立堿轨列车个性化运维系统的难点。现有的基于神经网络的方法没有充分利用数据表的丰富信息,影响了查询的准确率。针对数据表内容作为输λ的情况下,如何提升自然语言查询接口的查询准确率的问题,文中创新地提出了基于数据表内容的字段嵌入方法,利用数据表中每个字段存储的内容对字段进行嵌入表示,并据此提出了新的模型嵌入层结构;此外,提出了一种基于数据表内容的数据增强方法,通过用数据表相冋字段中的其他记录去代替查询语句中的属性值,来产生新的训练样本。最后,针对提岀的字段嵌入表示和数据增强方法,在 Wikisqi数据集上进行了对比实验。实验结果显示,相比当前效果最妤的模型,单独使用这两种方法时能够提升0.6%~0.8%的查询准确率,共同使用时则能够提升接近1%的查询准确率,证明所提字段嵌入和数据増强方法对查询准确率有一定的提升作用。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !