目标跟踪是计算机视觉领域的一个重要研究方向,针对目前算法对于目标外观变化的鲁棒性较差等问题,提出了一种基于信息熵的级联 Siamese网络目标跟踪方法。首先利用孪生神经网络( Siamese network)对第一帧目标模板和当前帧待检测区域提取深度卷积特征,并通过相关性计算响应图;然后根据定义的信息熵和泙均峰值系数评价响应图质量,针对质量差的响应图对卷积特征进行模型因子更新;最后利用最终的响应图确定目标位置并计算最佳尺度。在VOT2016,VOT2017数据集上进行实验,结果证明在保证实时运行的基础上所提算法的精度优于其他算法。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !