红外光真的具备鉴定物质结构的能力?

描述

总的来说,世界上的任何物质都是运动着的,除了人们可以直接观察到的宏观运动,如流动的河水,奔驰的汽车等,构成物质的分子和原子还存在着微观运动,这些运动很难直接观察或捕捉,通常都是以间接的方式被认识和研究的,比如炒菜时满屋飘香(气味分子的扩散运动)。与宏观现象一样,微观世界的物质运动也必然伴随着能量的变化和转移,这些变化直接与电磁波发生联系,可以用简单的关系式,即普朗克定律来表示:

传感器

式中传感器为能量的变换值,h 为普朗克常数,传感器为电磁波的频率。

电磁波是以波动的形式传播的电磁场。按照波长或频率的顺序把相应的电磁波排列起来,就是电磁波谱(如下图)。依照波长的长短、频率以及波源的不同,电磁波谱可大致分为:γ射线、X射线、紫外线、可见光、红外线、微波和无线电波,而本片文章要介绍的就是利用红外辐射的红外光谱分析。

传感器

分子在振动运动的同时还存在转动运动,红外吸收光谱是分子振动能级的跃迁(同时伴随转动能级的跃迁)而产生的,实际上是分子的振动与转动运动的加和表现,因此又称为分子振动转动光谱。接下来就让我们踏上旅程,去探索一下红外吸收光谱图的形成过程吧!

和可见光一样,红外辐射可以a、从物质表面反射b、被物质吸收c、穿透物质(如下图)。

传感器

物质吸收电磁辐射应满足两个条件:

(1)辐射应具有刚好能满足物质跃迁时所需的能量;

(2)辐射与物质之间有相互作用。

当一定频率(一定能量)的红外光照射分子时,如果分子中某个基团的振动频率和红外辐射的频率一样,就满足了第一个条件。为满足第二个条件,分子必须有偶极矩的改变。什么是偶极矩呢?我们知道,任何分子就其整体而言是呈现电中性的,但由于分子中的各个原子因外层电子得失难易表现出不同的电负性,使得分子显示不同的极性。我们通常用偶极矩μ来表示分子极性的大小(如下图):

传感器

只有发生偶极矩变化的振动才能产生可观测的红外吸收光谱。由于d的瞬时值不断在发生变化,分子的偶极矩μ也相应地改变。当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一样,二者就会产生共振,此时光的能量通过分子偶极矩的变化传递给分子,增加了基团的振动能,振幅加大,这个基团就吸收一定频率的红外光,产生振动跃迁。

传感器

而当使用连续改变频率的红外光照射分子时,如果红外光的振动频率和分子中各基团的振动频率不同,该部分红外光就不会被吸收(如上图)。这样由于通过分子的红外光被吸收的情况不同,在一些波长范围内被部分吸收后变弱,在另一些波长范围内不被吸收,将分子吸收红外光的情况用傅里叶变换红外光谱仪记录下来,就得到该样品的红外吸收光谱图了。下图为傅里叶变换红外光谱仪记录红外谱图过程示意图:

传感器

通过这些得到的红外吸收光谱图我们就可以分析物质的结构,获取有用的结构信息。那么具体如何来看?

分子中的原子有两种基本振动形式类型,即伸缩振动和变角振动,其中变角振动又包括弯曲振动和变形振动。如果我们把分子比作用一根弹簧连接的两个刚性小球(如下图),那么弹簧长度就代表化学键的长度。

传感器

对于双原子分子来说,只有一种伸缩振动形式,即两个小球在同一直线上来回伸缩;而对于多原子分子,则存在多种振动形式,比如H2O分子的对称伸缩振动、反对称伸缩振动和弯曲(变形)振动(图1),还有甲基的伸缩振动和不同种类的弯曲(变形)振动(图2)。

传感器

图1 水分子的红外谱图

传感器

图2 甲基的振动形式

红外光谱除用波长λ(单位μm)表征外,为便于表达,还广泛使用波数(单位cm-1)表征。波数是波长的倒数,表示每厘米长光波中波的个数,波数和波长的关系式为:

v(cm-1)=1/λ(cm)=10000/λ(μm)

传感器

习惯上按照红外线波长,将红外光谱分成三个区域:近红外区、中红外区和远红外区三个波段。三个区的波长和波数范围如下图所示: 

传感器

其中,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。

我们通常所说的红外光谱系指波长在2.5-25 μm之间的中红外光谱。就像每个人都有不同的指纹一样,每一种化合物也都有属于自己的“指纹图谱”——红外光谱,其最重要的应用是中红外区有机化合物的结构鉴定。通过与标准谱图比较,可以确定化合物的结构;对于未知样品,通过官能团、顺反异构、取代基位置、氢键结合以及络合物的形成等结构信息可以推测结构。红外光谱与紫外光谱、质谱、核磁共振并称物质结构分析“四大谱”,是仪器分析中重要的分析手段之一。

随着红外光谱附件技术(如显微镜、漫反射、镜面反射和掠角反射、衰减全反射等配件)和计算机软件技术(如差谱技术、红外光谱谱图压缩数据库及其网络传输等)的高速发展,红外光谱技术的应用迅速拓宽至诸多领域。

新型冠状病毒感染的肺炎疫情严峻,测量体温成为防控疫情的必要手段。人体红外线测温仪做为关键的医疗设备,在疫情防控中充分发挥主导作用。

比如红外热成像体温快速筛检仪,可在人流密集的公共场所进行大面积监测,自动跟踪、报警高温区域,与可见光视频配合,快速找出并追踪体温较高的人员(如上图)。所有高于绝对零度(-273℃)的物体都会发出红外辐射。人体发出的红外辐射被红外热像仪的探测器和光学镜头捕捉到,然后将这些红外辐射能量分布图形反映到光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。

通俗地讲红外热像仪就是将物体发出的不可见的红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。另外还有红外耳温计和红外额温计,红外体温计设备简单、使用方便、价格实惠,应用广泛,可实现对人员的依次、快速测温。

还有遥感技术,即太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器,传感器将这部分能量记录下来,传回地面(如下图)。其中红外遥感技术是指传感器的工作波段限于红外波段范围之内,主要感受地面物体反射或自身辐射的红外线,有时可不受黑夜限制。

此外,红外光谱在化学化工、环境分析、半导体和超导材料等其他领域的应用都得到了广泛的发展。

编辑:jq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分