This document presents the steps to setup an environment for using the EVAL-CN0271-SDPZ evaluation board together with the Xilinx KC705 FPGA board and the Xilinx Embedded Development Kit (EDK). Below is presented a picture of the EVAL-CN0271-SDPZ Evaluation Board with the Xilinx KC705 board.
For component evaluation and performance purposes, as opposed to quick prototyping, the user is directed to use the part evaluation setup. This consists of:
The SDP-B controller board is part of Analog Devices System Demonstration Platform (SDP). It provides a high speed USB 2.0 connection from the PC to the component evaluation board. The PC runs the evaluation software. Each evaluation board, which is an SDP compatible daughter board, includes the necessary installation file required for performance testing.
Note: it is expected that the analog performance on the two platforms may differ.
Below is presented a picture of SDP-B Controller Board with the EVAL-CN0271-SDPZ Evaluation Board.
The circuit from the EVAL-CN0271-SDPZ board is a complete thermocouple signal conditioning circuit with cold junction compensation followed by a 16-bit sigma-delta (Σ-Δ) analog-to-digital converter (ADC). The AD8495 thermocouple amplifier provides a simple, low cost solution for measuring K type thermocouple temperatures, including cold junction compensation. A fixed gain instrumentation amplifier in the AD8495 amplifies the small thermocouple voltage to provide a 5 mV/°C output. The high common-mode rejection of the amplifier blocks commonmode noise that the long thermocouple leads can pick up. For additional protection, the high impedance inputs of the amplifier make it easy to add extra filtering. The AD8476 differential amplifier provides the correct signal levels and common-mode voltage to drive the AD7790 16-bit, Σ-Δ ADC. The circuit provides a compact low cost solution for thermocouple signal conditioning and high resolution analog-to-digital conversion.
The AD7790 is a low power, complete analog front end for low frequency measurement applications. It contains a low noise 16-bit Σ-Δ ADC with one differential input that can be buffered or unbuffered along with a digital PGA, which allows gains of 1, 2, 4, and 8.
The first objective is to ensure that you have all of the items needed and to install the software tools so that you are ready to create and run the evaluation project.
Before connecting the ADI evaluation board to the Xilinx KC705 make sure that the VADJ_FPGA voltage of the KC705 is set to 3.3V. For more details on how to change the setting for VADJ_FPGA visit the Xilinx KC705 product page.
The following commands were implemented in this version of EVAL-CN0271 reference project for Xilinx KC705 FPGA board.
Command | Description |
---|---|
help? | Displays all available commands. |
adcCode? | Displays the ADC Code. |
temperature? | Displays the temperature measured by the thermocouple. |
reset! | Resets the serial interface with AD7790. |
Commands can be executed using a serial terminal connected to the UART peripheral of Xilinx KC705 FPGA.
The following image shows a generic list of commands in a serial terminal connected to Xilinx KC705 FPGA's UART peripheral.
The hardware platform for each reference projects with FMC-SDP interposer and KC705 evaluation board is common. The next steps should be followed to recreate the software project of the reference design:
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !