为有效地检测脑电图(EEG)中的癫痫信号,设计一维局部三值模式(1D-LTP)算子提取信号特征,并结合主成分分析(PCA)和极限学习机(ELM)对特征进行分类。通过1DLTP算子计算信号点的顶层模式和底层模式下的特征变换码以准确滤除干扰信号,并对变换码直方图PCA降维后采用ELM进行分类,以10折交叉验证评估分类性能。实验结果表明,该方法能有效识别在癫痫发作期的EEG信号,其准确率可达99.79%。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !