CN0105 经验证,采用图中所示的元件值,该威廉希尔官方网站
能够稳定地工作,并具有良好的精度。虽然此威廉希尔官方网站
为直流耦合,但应用于交流耦合也很常见。该威廉希尔官方网站
的常见变化包括单电源电压、以差分方式驱动的输入以及需要信号衰减的输入。其它ADC驱动/差分放大器也可用于根据具体应用调整性能(如功率、噪声、带宽、架构等)。
如AD7626数据手册所示,当输入频率为1MHz或更低时,推荐使用驱动放大器ADA4899-1。如数据手册中AD7626典型工作特性一节的高频坐标图所示,使用ADA4938-1可通过最高达10 MHZ的高速信号有效驱动AD7626。 采用差分放大器成功驱动ADC需要正确平衡差分放大器的各端。
图1显示了ADA4932-1、AD7626和相关威廉希尔官方网站
的原理图。在使用的测试威廉希尔官方网站
中,信号源之后配置有2.4 MHz带通滤波器。该带通滤波器能抑制2.4 MHz信号的谐波,并确保只有目标频率的信号能够通过并由ADA4932-1和AD7626进行处理。
图1. ADA4932-1驱动AD7626(未显示去耦和所有连接)
本例中信号源的特性阻抗为50 Ω,通过带通滤波器交流耦合到ADA4932-1。将信号源施加于ADA4932-1的正输入时,要求信号源也以50 Ω正确端接(通常情况下任何源阻抗均可)。选中端接电阻R2,以使R2与ADA4932-1输入阻抗的并联组合等于50 Ω。ADA4932-1输入阻抗(观察电阻R3)的计算公式如下:
其中RG = R3 = R5 = 499 Ω,RF = R6 = R7 = 499 Ω。根据这些值,本威廉希尔官方网站
的输入阻抗约为665 Ω。ADA4932-1的输入阻抗665Ω与R2的电阻53.6 Ω并联后为50 Ω(即输入源阻抗)。
为使ADA4932-1的两个输入端保持适当平衡和对称,与输入源阻抗等效的戴维南阻抗和端阻抗必须添加到反相输入端。在这种情况下,就涉及到滤波器的交流特性。
如图1所示,戴维南等效网络显示在ADA4932-1的反相输入端。频率为2.4 MHz时,此威廉希尔官方网站
性能得到优化。C1和R4串联组合后,与电阻R1并联。频率为2.4 MHz时,C1和R4的复合串联组合等于55.6 Ω。与R1并联的55.6 Ω阻抗与戴维南等效威廉希尔官方网站
在同相输入端的输入阻抗只有几欧姆之差。两个输入的匹配可确保输出对称、均衡且经过优化,可实现最低失真。
有关单端输入端接方法的详细说明,请参阅应用笔记AN-1026“高速差分ADC驱动器设计考虑”。此外,ADI公司DiffAmpCalcuator™设计工具大大简化了这一操作,并针对与差分放大器设计有关的其他问题提供了独到见解。
ADA4932-1差分驱动器的增益配置约为1(单端输入至差分输出)。由于50 Ω信号源以及在ADA4932-1输入端匹配的端阻抗的作用,相对于戴维南等效信号源电压,通道的净总增益大约为0.5。
使用配置为单位增益缓冲器的AD8031来缓冲AD7626的VCM输出电压(标称+2.048 V),即可设定ADA4932-1输出的共模电压。AD8031为ADA4932-1 VOCM引脚提供低源阻抗,并能驱动大型旁路电容,如图1所示。
当驱动AD7626(带开关电容输入的10 MSPS ADC)的高频输入时,ADA4932-1的作用尤其显著。ADA4932-1和AD7626 的IN+和IN-引脚之间的电阻(R8、R9)和电容(C5、C6)威廉希尔官方网站
可充当低通噪声滤波器。该滤波器限制了AD7626的输入带宽,但其主要功能是优化驱动放大器和AD7626之间的接口。串联电阻将驱动放大器与ADC开关电容器前端的高频开关尖峰隔离。AD7626数据手册显示了20 Ω和56 pF的值。在
图1所示威廉希尔官方网站
中,这些值根据实际应用优化为33 Ω和56 pF。若要针对转换中的威廉希尔官方网站
和输入频率对电阻-电容组合进行略微优化,只需改变R-C组合即可。但是切记,若组合不当,将限制AD7626的总谐波失真(THD)和线性度性能。此外,ADC带宽的增加会引起更多噪声。
ADA4932-1电源电压的选择也得到了优化。在威廉希尔官方网站
中,对应于4.096V的内部基准电压,AD7626的输出共模电压(VCM引脚)为2.048 V,每个输入(IN+、IN-)在0 V和+4.096 V之间摆幅,发生180°错相,这提供了ADC的8.2 V满量程差分输入。对于线性运算的每个电源电压,ADA4932-1输出级需要大约1.4 V的裕量。当电源电压关于共模电压大致对称时,能获得最佳失真性能。如果选定-2.5 V负电源,则至少需要大约+6.5 V正电源才能关于2.048V共模电压对称。
实验表明,+7.25 V正电源可为2.4 MHz信号音提供最佳的总失真性能。
使用低抖动时钟源和AD7626的单音-1 dBFS幅度2.402 MHz输入,可产生图2所示的FFT结果:信噪比为88.49 dB,总谐波失真为-86.17 dBc。从图中可以看到,基波的谐波重新混叠到通带。例如,采样率为10 MSPS时,三次谐波(7.206 MHz)会在10.000 MHz-7.206 MHz = 2.794 MHz混叠到通带。图3所示为-6 dBfs幅度信号音的第二个FFT坐标图。
图2. AD7626输出,64,000点,FFT坐标图,-1 dBFS幅度,2.40173 MHz的输入信号音,10.000 MSPS采样率
图3. AD7626输出,64,000点,FFT坐标图,-6 dBFS幅度,2.40173 MHz输入信号音,10.000 MSPS采样率
计算信噪比和总谐波失真时,用整个奈奎斯特带宽的平均噪声取代了威廉希尔官方网站
所用带通滤波器的通带准许通过的非谐波噪声。
该威廉希尔官方网站
或任何高速威廉希尔官方网站
的性能都高度依赖于适当的PCB布局,包括但不限于电源旁路、受控阻抗线路(如需要)、元件放置、信号路由以及电源层和接地层。(有关PCB布局的详细信息,请参见MT-031教程, MT-101教程 和高速印刷威廉希尔官方网站
板布局实用指南一文。)
AD7626—典型连接和基准电压配置
AD7626的典型连接图见图4。AD7626集成一个内部基准电压源,还可根据系统要求提供两个外部基准电压源。将 ADR280基准输出(1.2 V)施加到REFIN引脚可产生基准电压,然后由片内基准电压缓冲内部放大到正确的ADC基准电压4.096 V。ADR280可由用于AD7626的同一5 V模拟供电轨供电,同时使用片内基准电压缓冲。或者,也可以将4.096 V外部基准电压(ADR434 或 ADR444) )施加到ADC的非缓冲REF输入。此做法在多通道应用中很常见,在此类应用中,系统基准电压通常是分立缓冲的(使用AD8031),并且由所有ADC通道共享。ADR434和ADR444的配置也极其适用于单通道应用,此类应用需要较低的基准电压源温度系数(ADR434B和ADR444B最大为3 ppm/°C)。用于为放大器ADA4932-1供电的正供电轨也能为ADR434或ADR444的VIN电源引脚供电。
图4. AD7626的典型连接图(显示去耦和LVDS接口连接)。
CN0105 16位10 MSPS ADC AD7626的单端转差分高速驱动威廉希尔官方网站
图1所示威廉希尔官方网站
可将高频单端输入信号转换为平衡差分信号,用于驱动16位10 MSPS PulSAR® ADC AD7626。该威廉希尔官方网站
采用低功耗差分放大器ADA4932-1 来驱动ADC,最大限度提升AD7626的高频输入信号音性能。此器件组合的真正优势在于低功耗、高性能。
AD7626具有突破业界标准的动态性能,在10 MSPS下信噪比为91.5 dB,实现16位INL性能,无延迟,LVDS接口,功耗仅有136 mW。AD7626使用SAR架构,主要特性是能够以10 MSPS无延迟采样,不会发生流水线式ADC常有的“流水线延迟”,同时具备出色的线性度。
ADA4932-1具有低失真(10 MHz时100 dB SFDR)、快速建立时间(9 ns达到0.1%)、高带宽(560 MHz,-3 dB,G = 1)和低电流(9.6 mA)等特性,是驱动AD7626的理想选择。它还能轻松设定所需的输出共模电压。
该组合提供了业界领先的动态性能并减小了威廉希尔官方网站
板面积:AD7626采用5 mm × 5mm、32引脚LFCSP封装,ADA4932 -1采用3mm× 3mm、16引脚LFCSP封装),AD8031 采用5引脚SOT23封装。 cn0105 图1所示威廉希尔官方网站
可将高频单端输入信号转换为平衡差分信号,用于驱动16位10 MSPS PulSAR® ADC
AD7626。该威廉希尔官方网站
采用低功耗差分放大器
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉