传统协同过滤算法仅依靠用户评分数据的低维向量方法,存在推荐结果精确度低以及冷启动问题。为此,提出一种新的动态混合推荐算法,将栈式降噪自动编码器融入到基于用户的协同过滤中,学习用户的深层次特征,并与基于用户项目属性偏好的相似度融合。在预测生成阶段,设置时间衰减项,动态预测访问概率,及时更新用户兴趣变化,从而提高推荐质量。在 Movielens数据集上的实验结果表明,与UB-CF、AE和 SDAE-IA算法相比,该算法推荐性能明显提高。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !