水下环境复杂多变,导致声呐技术成像后的图像质量差,影响目标识别。为此,提出一种基于 Contourlet域下多尺度高斯马尔可夫随机场(GMRF)模型的水平集声呐图像分割算法。采用 Contourlet变换及逆变换获取声呐图像各尺度层下的纹理特征,通过GMRF对各层纹理特征建模,以描述局部结构空间信息并降低对噪声的敏感度。根据各层纹理特征模型,对声呐图像进行由粗到细尺度的水平集分割以得到分割结果。实验结果表明,该算法在不同声呐图像中的分割准确度超过90%,优于Otsu算法,且具有较低的复杂度和较强的鲁棒性。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !