单片机进制转换

控制/MCU

1887人已加入

描述

一、正数

  在高速发展的现代社会,计算机浩浩荡荡地成为了人们生活中不可缺少的一部分,帮助人们解决通信,联络,互动等各方面的问题。今天我就给大家讲讲与计算机有关的“进制转换”问题。

  我们以(25.625)(十)为例讲解一下进制之间的转化问题。

1. 十 -----> 二

  给你一个十进制,比如:6,如果将它转换成二进制数呢?

  10进制数转换成二进制数,这是一个连续除2的过程:

  把要转换的数,除以2,得到商和余数,

  将商继续除以2,直到商为0。最后将所有余数倒序排列,得到数就是转换结果。

  听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。

  “把要转换的数,除以2,得到商和余数”。

  那么:

  要转换的数是6, 6 ÷ 2,得到商是3,余数是0。 (不要告诉我你不会计算6÷2!)

  “将商继续除以2,直到商为0……”

  现在商是3,还不是0,所以继续除以2。

  那就: 3 ÷ 2, 得到商是1,余数是1。

  “将商继续除以2,直到商为0……”

  现在商是1,还不是0,所以继续除以2。

  那就: 1 ÷ 2, 得到商是0,余数是1 (拿笔纸算一下,1÷2是不是商0余1!)

  “将商继续除以2,直到商为0……最后将所有余数倒序排列”

  好极!现在商已经是0。

  我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!

  6转换成二进制,结果是110。

  把上面的一段改成用表格来表示,则为:

  被除数 计算过程 商 余数

  6 6/2 3 0

  3 3/2 1 1

  1 1/2 0 1

  (在计算机中,÷用 / 来表示)

2. 二 ----> 十

  二进制数转换为十进制数

  二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……

  所以,设有一个二进制数:0110 0100,转换为10进制为:

  下面是竖式:

  0110 0100 换算成 十进制

  " ^ " 为次方

  第0位 0 * 2^0 = 0

  第1位 0 * 2^1 = 0

  第2位 1 * 2^2 = 4

  第3位 0 * 2^3 = 0

  第4位 0 * 2^4 = 0

  第5位 1 * 2^5 = 32

  第6位 1 * 2^6 = 64

  第7位 0 * 2^7 = 0 +

  ---------------------------

  100

  用横式计算为:

  0 * 2 ^ 0 + 0 * 2 ^ 1 + 1 * 2 ^ 2 + 1 * 2 ^ 3 + 0 * 2 ^ 4 + 1 * 2 ^ 5 + 1 * 2 ^ 6 + 0 * 2 ^ 7 = 100

  0乘以多少都是0,所以我们也可以直接跳过值为0的位:

  1 * 2 ^ 2 + 1 * 2 ^ 3 + 1 * 2 ^ 5 + 1 * 2 ^ 6 = 100

3. 十 ----> 八

  10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。

  来看一个例子,如何将十进制数120转换成八进制数。

  用表格表示:

  被除数 计算过程 商 余数

  120 120/8 15 0

  15 15/8 1 7

  1 1/8 0 1

  120转换为8进制,结果为:170。

4. 八 ----> 十

  八进制就是逢8进1。

  八进制数采用 0~7这八数来表达一个数。

  八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……

  所以,设有一个八进制数:1507,转换为十进制为:

  用竖式表示:

  1507换算成十进制。

  第0位 7 * 80 = 7

  第1位 0 * 81 = 0

  第2位 5 * 82 = 320

  第3位 1 * 83 = 512 +

  --------------------------

  839

  同样,我们也可以用横式直接计算:

  7 * 80 + 0 * 81 + 5 * 82 + 1 * 83 = 839

  结果是,八进制数 1507 转换成十进制数为 839

  5. 十 ----> 十六

  10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。

  同样是120,转换成16进制则为:

  被除数 计算过程 商 余数

  120 120/16 7 8

  7 7/16 0 7

  120转换为16进制,结果为:78。

6. 十六----> 十

  16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。字母不区分大小写。

  十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……

  所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

  假设有一个十六进数 2AF5, 那么如何换算成10进制呢?

  用竖式计算:

  2AF5换算成10进制:

  第0位: 5 * 160 = 5

  第1位: F * 161 = 240

  第2位: A * 162 = 2560

  第3位: 2 * 163 = 8192 +

  -------------------------------------

  10997

  直接计算就是:

  5 * 160 + F * 161 + A * 162 + 2 * 163 = 10997

  (别忘了,在上面的计算中,A表示10,而F表示15)

  现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

  假设有人问你,十进数 1234 为什么是 一千二百三十四?你尽可以给他这么一个算式:

  1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100

7. 二 ----> 八

  (11001.101)(二)

  整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:

  001=1

  011=3

  然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式

  小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:

  101=5

  然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.101的八进制形式

  所以:(11001.101)(二)=(31.5)(八)

8. 八 ----> 二

  (31.5)(八)

  整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:

  1---->1---->001

  3---->11

  然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式

  说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了!

  小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:

  5---->101

  然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式

  所以:(31.5)(八)=(11001.101)(二)

9. 十六 ----> 二 ;二 ----> 十六

  二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

  我们也一样,只要学完这一小节,就能做到。

  首先我们来看一个二进制数:1111,它是多少呢?

  你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。

  然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23 = 8,然后依次是 22 = 4,21=2, 20 = 1。

  记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

  下面列出四位二进制数 xxxx 所有可能的值(中间略过部分)

  仅4位的2进制数 快速计算方法 十进制值 十六进值

  1111 = 8 + 4 + 2 + 1 = 15 F

  1110 = 8 + 4 + 2 + 0 = 14 E

  1101 = 8 + 4 + 0 + 1 = 13 D

  1100 = 8 + 4 + 0 + 0 = 12 C

  1011 = 8 + 4 + 0 + 1 = 11 B

  1010 = 8 + 0 + 2 + 0 = 10 A

  1001 = 8 + 0 + 0 + 1 = 10 9

  ....

  0001 = 0 + 0 + 0 + 1 = 1 1

  0000 = 0 + 0 + 0 + 0 = 0 0

  二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。

  如(上行为二制数,下面为对应的十六进制):

  1111 1101 , 1010 0101 , 1001 1011

  F D , A 5 , 9 B

  反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?

  先转换F:

  看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。

  接着转换 D:

  看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。

  所以,FD转换为二进制数,为: 1111 1011

  由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。

  比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:

  被除数 计算过程 商 余数

  1234 1234/16 77 2

  77 77/16 4 13 (D)

  4 4/16 0 4

  结果16进制为: 0x4D2

  然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。

  其中对映关系为:

  0100 -- 4

  1011 -- D

  0010 -- 2

  同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。

  下面举例一个int类型的二进制数:

  01101101 11100101 10101111 00011011

  我们按四位一组转换为16进制: 6D E5 AF 1B

二、负数

  负数的进制转换稍微有些不同。

  先把负数写为其补码形式(在此不议),然后再根据二进制转换其它进制的方法进行。

  例:要求把-9转换为八进制形式。则有:

  -9的补码为11110111。然后三位一划

  111---->7

  110---->6

  011---->3

  然后我们将结果按从下往上的顺序书写就是:367,那么367就是十进制数-9的八进制形式。

  补充:

  最近有些朋友提了这样的问题“0.8的十六进制是多少?”

  我想在我的空间里已经有了详细的讲解,为什么他还要问这样的问题那

  于是我就动手算了一下,发现0.8、0.6、0.2... ...一些数字在进制之间的转化

  过程中确实存在麻烦。

  就比如“0.8的十六进制”吧!

  无论你怎么乘以16,它的余数总也乘不尽,总是余8

  这可怎么办啊,我也没辙了

  第二天,我请教了我的老师才知道,原来这么简单啊!

  具体方法如下:

  0.8*16=12.8

  0.8*16=12.8

  .

  .

  .

  .

  .

  取每一个结果的整数部分为12既十六进制的C

  如果题中要求精确到小数点后3位那结果就是0.CCC

  如果题中要求精确到小数点后4位那结果就是0.CCCC

  现在OK了,我想我的朋友再也不会因为进制的问题烦愁了!

  下面是将十进制数转换为负R进制的公式:

  N=(dmdm-1...d1d0)-R

  =dm*(-R)^m+dm-1*(-R)^m-1+...+d1*(-R)^1+d0*(-R)^0

  15=1*(-2)^4+0*(-2)^3+0*(-2)^2+1*(-2)^1+1*(-2)^0

  =10011(-2)

  其实转化成任意进制都是一样的

  初学者最容易犯的错误!!!!!!!

  犯错:(-617)D=(-1151)O=(-269)H

  原因分析:如果是正数的话,上面的思路是正确的,但是由于正数和负数在原码、反码、补码转换上的差别,所以按照正数的求解思路去对负数进行求解是不对的。

  正确的方法是:首先将-617用补码表示出来,然后再转换成八进制和十六进制(补码)即可。

  注:二进制补码要用16位。

  正确答案::(-617)D=(176627)O=(fd97)H

  负数十进制转换成八进制或十六进制方法

  如(-12)10=( )8=( )16

  第一步:转换成二进制

  1000 0000 0000 1100

  第二步:补码,取反加一 

  注意:取反时符号位不变! 

  1111 1111 1111 0100

  第三步:转换成八进制是三位一结合:(177764)8

  转换成十六进制是四位一结合:(fff4)16

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分