描述
随着数字技术的飞速发展,使频率合成技术也跃上了一个新的台阶。传统的频率合成器,通常从一排晶体振荡器产生的各种频率通过开关进行频率混合,或者采用锁相(PLL)技术实现频率合成。如在20世纪80年代初研制使用的频率合成器即是PLL技术,其原理如图1所示。
该合成器是由程序分频器、鉴相器及压控振荡器3大部分组成,从晶振束的100kHz标准信号经100分频后得1 kHz的基准频率fR,压控振荡频率f1通过程序分频得到频率fM,fM和fR同时加到鉴相器进行比较。只有当fR和fM完全同频同相时,环路平衡被锁定,即fR=fM。可见,当环路锁定时,压控振荡器的输出频率完全决定于程序分频器的分频比,即f1=M·fR,只要改变分频比M,便可使f1改变,从而得到所需的各个频率点。在此合成器中,从2.5~4.2MHz频段内,产生43个频率点。
使用PLL技术实现的频率合成器在性能上较之RC,LC振荡源有很大提高,但外围威廉希尔官方网站
复杂,且受外界干扰,分辨率难以提高,其他指标也不理想。近年来,数字化可编程频率合成器(简称DDS)的出现,使频率合成技术大大地前进了一步。1996年推出的DDS9850频率分辨率为0.029 l Hz,频率准确度可控制到,噪音电平-70 dB以下,谐波失真衰减4 x 109≥55 dB,先进的CMOS工艺不仅使AD9850性能一流,而且功耗小,在3.3V供电时,仅为155mW,其基本结构框图如图2所示。
图2中正弦查询表是一个可编程存储器(PROM),存有一个或多个完整周期的正弦波数据,在时钟Fc的驱动下,地址计数器逐步经过PROM,地址中相应的数字信号输入到N位数模转换器(DAC)的输入端,DAC输出模拟信号,经低通滤波器(LPF),可得到一个频谱纯净的正弦波。
系统的核心是相位累加器,他由1个加法器和1个N位相位寄存器组成,一般为24~32位,每束一个时钟Fc相位寄存器以步长M增加。相位寄存器的输出与相位控制字相加,然后输入到正弦查询表地址上,正弦查询表包含一个周期正弦波的数字幅度信息,每个地址对应正弦波中0°~360°范围的一个相位点。查询表把输入的地址相位信息映射成正弦波幅度信号,驱动DAC输出模拟量。
相位寄存器,每经过2N/M个fc时钟后回到初始状态,相应的正弦查询表经过一个循环回到初始位置,整个DDS系统输出一个正弦波,周期为了T。=Tc·2N/M,频率fout=M·fc/2N,相位累加器输出N位并不全部加到查询表,而要截断仅留高端13~15位,减小了查询表长度,但并不影响频率分辨率。DDS9850控制简单,可用8位并行口或串行口直接输入频率、相位等控制数据,其工作原理如图3所示。
他采用32位相位累加器,截断成14位,输入正弦查询表,查询表输出截断成10位输入到DAC。DAC输出2个互补的模拟电流接到滤波器上,外接1个电阻RSET调节DAC满量程输出电流,其调节关系是ISET=32(1.248 V/RSET),满量程电流为10-20 mA。DDS9850内部有高速比较器接到DAC滤波输出端,就可直接输出一个抖动很小的脉冲序列,此脉冲输出可用作ADC器件的采样时钟。DDS9850用5位断据字节控制相位,允许相位按增量180°, 90°,45°,22.5°,11.25°移动或进行组合。
DDS9850有40位寄存器,32位用于频率控制,5位相位控制,1位电源休眠功能,2位厂家保留测试控制,这40位控制字可通过并行方式或串行方式装入到DDS9850。在并行装入方式中,通过8位总线D7~D0重复5次装入寄存器,在FQ-VD上升沿把40位数据从输入寄存器装入到频率和相位及控制数据寄存器,从而更新DDS输入频率和相位,同时把地址指针复位到第一个输入寄存器。在串行装入方式中,W-CLK上升沿把25脚(D7)的一位数据串行移入,移动40位后,用一个FR-VD就可以更新输出频率和相位。
以上介绍了DDS9850的原理,从使用的角度来看,数字化可编程频率合成器不仅从威廉希尔官方网站
设计上较以前传统的频率合成器有了很大的改变,而且在现场使用中也可以根据送入的数字控制信号得到所需频率的信号输出,同时输出信号的指标也较传统的频率合成器有了很大的提高。 我们已经把DDS9850用在HX-11传输测试仪中,该传输测试仪是针对电力载波通信而设计的,主要用于电力载波线的电平、增益、衰减、防卫度等特性的测试,还可作电平指示、频谱分析和导频测量。在仪器的设计上,一方面采用了LCD全汉字显示,使操作非常方便;另一方面应用了DDS技术,使稳定性和频率精度提高。其原理如图4所示,DDS9850在威廉希尔官方网站
中作为本振产生频率和相位可调的-9 dB正弦波信号fdds,输入频率信号经放大或衰减后得到-40 dB的电平信号,此信号与本振信号进行混频,然后送到窄带带通滤波器(LPF),输出的信号再经整流,得到直流输出。当DDS9850产生的频率与输入频率的差值等于窄带带通滤波器的中心频率时,滤波器有一定的输出,否则,滤波器输出为0。这样只要测量经过整流过的直流信号电压,就可将输入信号的频率、幅度、稳定性测量出来。运用此方法,关键在于本振信号的产生。传统上采用LC模拟威廉希尔官方网站
或PLL技术来实现频率合成,在频率的精确定位上不易实现,从而造成精度不高、测量不方便等因素,使整机的精度和使用都达不到理想水平。现在采用了数字化可编程频率合成器DDS9850后弥补了这些缺点。
由于DDS9850外围设计简单,控制方便,并且输出信号纯净,几乎不含噪声,非常适合精确频率合成方面的应用。在实际使用中,数字化可编程频率合成器DDS9850还可应用于信号发生器、扫频仪或通讯载波领域中。
打开APP阅读更多精彩内容