基于电容检测芯片MS3110的电容式传感器检测系统

MEMS/传感技术

1293人已加入

描述

  引言

  电容式传感器一般是将被测量的变化量转换为电容量的变化。目前国内外都缺乏能够对微小电容进行实时检测的专用仪器,普遍的做法是针对所研发的传感器自行设计、制做专门的电容检测威廉希尔官方网站 ,这无疑增加了传感器设计的难度与工作量。针对这一问题,我们设计了通用的电容式传感器检测系统。该系统能够对微小电容进行实时检测,并可以通过上位机实现实时显示、存储等功能。

  1 总体设计

  电容式传感器的检测方法主要有:设计专用ASIC芯片;使用分立元件通过电容桥、频率测量等原理实现测量;使用通用电容检测芯片将电容转换为电压或其他量等。从技术难度、测量精度等多方面考虑,本系统采用集成电容检测芯片来完成对电容式传感器的检测。系统结构框图如图1所示。电容检测芯片选用Irvine Sensor公司的MS3110。MS3110将电容量转换为电压量输出(量程为0~10 pF)。单片机MSP430F149集成的12位A/D转换器对输出电压进行采样,并通过I/O端口对MS3110内部寄存器进行设置。数据经采样后通过串口传送到上位机进行处理、实时显示、存储等。上位机由普通微机构成。

  

电容检测

  2 系统硬件设计

  2.1 MS3110简介及寄存器设置

  MS3110是Irvine Sensor公司生产的具有极低噪声的通用电容检测芯片。它采用CMOS工艺,工作电压为+5 V,测量灵敏度为,集成的补偿电容等参数均可以通过寄存器控制。其基本测量原理为:对被测电容与参考电容同时以相反时序充放电,通过电流积分、低通滤波、放大等将被测电容与参考电容差值转换为电压输出。MS3110内含一个60位的寄存器和100位的EEPROM。可通过单片机MSP430F149的I/0口对其EEFROM编程,或使MS3110工作在测试状态直接对寄存器进行编程。通过这些设置可对MS3110内部各个模块的参数进行精确的调节。

  MS3110原理框图如图2所示。MS3110主要由电容补偿威廉希尔官方网站 、电荷积分威廉希尔官方网站 、低通滤波器以及运算放大器组成。

  

电容检测

 

  其中,CSlIN、CS2IN为被检测电容,CSl、CS2为MS3110内部的可调电容。通过对内部寄存器进行设置,CS1可在O~1.197 pF范围内调节,CS2可在0~9.709pF范围内调节。CF为电荷积分器的积分电容,可在O~19.437 pF范围内调节。以上3个可调节电容的调节步进均为19 fF。低通滤波器的带宽可在O.5~8 kHz范围内调节,可调增益GAIN可选择2或4。

  另外,参考电压VREF、空载输出电压Vout等也可以通过寄存器进行精确调节。其空载输出电压的计算公式如下:

  Vout=GAIN×V2P25×1.14×(CS2T-CS1T)/CF+VREF (1)

  式中:CSlT=CS1IN+CSl,CS2T=CS2IN+CS2;本系统中可调整的内部增益GAIN取2;V2P25为芯片参考电压输出,默认值为2.25 V;参考电压VREF可选O.5 V与2.5 V两个值,本系统中选取O.5 V。由于烧写EEPROM需要额外的16 V电压,本系统中将TEST引脚拉低使芯片处于测试状态,通过I/O即可直接更改其寄存器。由于掉电后寄存器数据将丢失,所以每次上电后都需要对所有的寄存器进行初始化。需要特别指出的是,MS3110数据手册中给出的写寄存器时序图中,将数据输入时钟SCLK周期标为固定值2μs。在实验中我们发现,周期大于2μs时均可成功设置。

  2.2 MSP430F149简介及通信接口设计

  系统使用MSP430F149集成的12位A/D转换器进行A/D转换。MSP430F149在1 MHz的时钟频率下运行时,芯片的电流在200~400μA左右;在等待方式下,耗电仅为O.7μA;在节电方式下,电流最低可达0.1 μA。集成的12位A/D转换器具有较高的转换速率,最高可达200 kbps,能够满足大多数数据采集应用,为系统的单片解决方案提供了极大的方便。

  MSP430F149集成的A/D转换器可采用内部2.5 V参考电压或外部参考电压,但其内部参考电压准确性较差,在本系统中将MS3110的2.25 V参考电压输出作为A/D转换器的参考电压。低功耗单片机与集成A/D转换器的采用保证了系统拥有较低的功耗。

  与上位机的通信接口采用MSP430F149集成的串行接口,通过MAX3232芯片转换为三线RS232接口与计算机串口直接相连。

  3 系统软件设计

  系统软件包括单片机软件与上位机软件两部分。

  3.1 单片机软件设计

  采用IAR Assembler for MSP430集成开发环境,使用C语言编写了单片机部分的程序,主要包括系统初始化、测量芯片寄存器初始化、测量与数据传输等。单片机软件流程如图3所示。

  

电容检测

 

  单片机初始化包括单片机I/O初始化、串行口参数初始化、A/D转换器初始化,以及与上位机通信接收系统参数等。MS31lO初始化是通过单片机I/O对MS3110内部寄存器进行初始化,包括参考电容值、可调增益、初始电压等参数。采样开始后,单片机按照设定采样率进行采样;采样结束后,将数据经转换后传送给上位机进行处理、显示与存储。

  3.2 上位机软件设计

  采用VC++6.0软件和C++语言编写系统的上位机软件。软件功能主要包括设置参数,与下位机通信,数据实时图形化显示、存储和读取等。上位机软件界面如图4所示。

  

电容检测

 

  4 精度测试与分析

  进行测试前,首先应对威廉希尔官方网站 的初始输出进行校准。方法如下:将CSl、CS2设置为O,使用用高精度电压表对MS3110芯片输出电压进行测量,输出为O.497 192 V,将式(1)中的VREF修正为0.497192 V。

  在威廉希尔官方网站 板CS2IN位置上焊接一个1.8 pF多层陶瓷电容,用于模拟外部电容式传感器;芯片内部可调电容CS2由O逐步步进到342 fF,以模拟传感器电容的变化,步进值为19 fF。具体寄存器参数设置如下:CSl设为O,为CF设9.728 pF,可调增益GAIN设置为2,V2P25设为2.25 V,其他参数均取手册推荐值。通过实验测得,当CS2取O时,测量值为1.960 021 pF。与电容标称值的差异主要是由电容本身容差与威廉希尔官方网站 的分步电容引起的。由式(1)可得:

  CS2=(Vout-VREF)CF/(GAIN×V2P25×1.14) (2)

  代入具体数值可得:

  CS2=(Vout-0.497 192)×9.728/5.13 (3)

  其中,Vout=(A/D采样值/4 095)×2.25。精度测试实验结果如表1所列(实测容值为10次测量的均值)。

  

电容检测

 

  测试结果表明,该电容式传感器检测系统具有较高的检测精度,平均误差仅为0.879 fF,最大绝对误差小于1.6 fF。由于MSP430F149集成的A/D转换器为12位,当CF取9.728 pF时,系统对电容的分辨率只有1.042fF。可见,A/D转换器的分辨率是制约检测精度的重要因素。在对系统进行改进时,可考虑采用更高位数的A/D转换器。

  结语

  本文基于电容检测芯片MS3110设计了一款电容式传感器检测系统,给出了设计要点和需要注意的问题。该系统具有较高的测试精度,可用于电容式传感器检测与研发。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分