电源/新能源
自举式悬浮驱动威廉希尔官方网站 可以极大的简化驱动电源的设计,只需要一路电源就可以驱动上下桥臂两个开关管的驱动,可以节省Si MOSFET功率器件方案的成本。随着新能源受到全球政府的推动与支持,与新能源相关的半导体芯片需求激増,导致产能紧缺。绿色低碳技术创新应用是实现碳中和目标的重要一环,碳化硅是应用于绿色低碳领域的共用性技术,SiC MOSFET替代Si MOSEFET成为了许多厂商的新选择。不过,SiC MOSFET的驱动与Si MOSFET到底有什么区别,替代时威廉希尔官方网站 设计如何调整,是工程师非常关心的。我们《SiC MOSFET替代Si MOSFET,只有单电源正电压时如何实现负压?》一文中已经分享了负压自举的小技巧。本文SiC MOSFET驱动常规自举威廉希尔官方网站 的注意事项。
图1:
自举威廉希尔官方网站 工作原理:
如图1,当下管导通时候,电源通过Rboot、Dboot对自举电容Cboot进行充电,当下管关断后,Cboot提供电源对上管进行驱动。
Vgsh为上管驱动波形、Vgsl为下管驱动波形、Vgshin为上管输入侧驱动波形。该结果为测试板上电状态下发送一个双脉冲驱动下管,同时上管为互补的驱动波形,图中可以看出在上管输入驱动波形为“开通”状态下,上管GS并没有及时开通而是经过40us左右延迟后才开始跟随输入驱动信号状态,这是因为在初始状态下上管驱动芯片没有得电,在下管导通后上管驱动芯片电源才开始得电。从驱动芯片得电后到芯片可以正常工作大概有几十us的延迟,所以才导致图上现象的产生,这也是自举威廉希尔官方网站 存在问题,该问题可以通过增加D1、R1通过母线电压对Cboot电容进行预充电解决。
通过观察威廉希尔官方网站 也可以看出驱动电源为VCC2,下管驱动时候可以VCC2满幅输出,而上管由于Dboot的存在Cboot的电压始终会比VCC缺少一个Dboot压降,并且对下管开关频率和占空比也有相关要求,下管一定要达到固定时间上管的Cboot才能每个周期充满电正常工作。
上图可以看出由于上管达不到满幅VCC所以导致关断负压不够负,开通正压不够正,提高VCC电压会导致下管负压太大又会有击穿SiC驱动芯片的风险,运用自举威廉希尔官方网站 需要权衡这方面的问题。
综上,SIC MOSFET驱动也可以用自举威廉希尔官方网站 驱动一个半桥,从而减少一路电源,以节省成本。但在实现自举威廉希尔官方网站 的时候也会有一些问题需要注意,具体总结如下
1、由于上管在导通时需要通过自举电容放电,为了保证上端的正常开关,需要调整PWM,为自举电容预留充电时间
2、关于Dboot的选择,由于Cboot上为瞬间充电,需要考虑Dboot的载流能力,当下管导通时Dboot端会承受母线级别的大电压,所以需要有足够的耐压
3、自举电容Cboot需要选择寄生电感尽可能小的电容,防止充电时产生LC震荡
4、由于上管驱动电压会有一定降幅且对整个自举威廉希尔官方网站 杂散参数有较高要求,自举威廉希尔官方网站 建议尽在中低功率下使用
派恩杰半导体的SiC MOSFET性能与可靠性已经和国际第一梯队的碳化硅芯片厂比肩。对于第三代半导体的应用行业来说,碳化硅平面型的MOSFET技术仍是一个主流技术。派恩杰的第三代平面栅碳化硅MOSFET技术,具有业内领先的HDFM指标和较低的开关损耗,以及在高温下运行下有较高的效率,排放少。2021年派恩杰半导体已经有了一个全球Qgd x Rds(on)(开关品质因数)最小的MOSFET产品。而且派恩杰半导体的SiC MOSFET产品在新能源汽车OBC应用验证取得了重大突破,获得了新能源汽车龙头企业数千万订单。对于新能源汽车、IDC、光伏、风机、光充储等领域,派恩杰半导体均有完善的驱动方案和典型应用的demo案例,供客户参考,帮助客户实现快速研
全部0条评论
快来发表一下你的评论吧 !