hash表、快排与二分查找:两数之和

描述

 

今天的题目是两数之和,题目是这样的:

给定一个整数数组与一个target,在数组中找到两个数,其和等于target,并返回这两个数字的下标。

示例:

数组 nums = [2,7,11,15], target = 9,则输出[0,1],因为nums[0] + nums[1] == 9

题目不难,解决方法也有很多种,我们依次来看一下,任何题目都可以从最简单的方法开始去想,以下代码均为C++。

暴力解法

我们首先固定一个数字,比如第一个数字2,然后遍历后面的元素,判断是否相加等于9,有就记录下来,没有则看下一个数字,也就是7,最终代码非常简单,其时间复杂度为O(n^2):

vector twoSum(vector& nums, int target) {
    vector res;
    for (int i = 0; i < nums.size(); i++) {
        for (int j = i + 1; j < nums.size(); j++) {
            if (nums[i] + nums[j] == target) {
                res.push_back(i);
                res.push_back(j);
            }
        }
    }
    return res;
}

万万没想到的是这样的代码竟然可以AC(AC是刷题的常用术语,也就是Accept,通过代码的评测标准,包括正确性、耗时、内存的消耗等等)。

从这里的分析我们其实可以知道,这本质上其实是一个搜索问题,假如我知道第一个数字是2,而target是9,那么我们需要回答“这个数组中是否有7这个数字”,因此这本质上是一个搜索问题。

既然是搜索问题,那么hash表显然是我们最得力的武器

hash 表

关于hash表后续会有专题详解。

数组

C++中基于hash表这种数据结构的是std::unordered_map,我们的思路也很简单,把所有的数组元素作为key,数组下标作为值,因为题目要求我们返回下标,因此这里必须把下标也存储起来,有了这样的map,剩下的就简单了。

依次遍历数组中每个元素N,查找target-N是否存在于map中即可。

vector twoSum(vector& nums, int target) {
    unordered_map map;
    vector res;

    for (int i = 0; i < nums.size(); i++) {
        auto iter = map.find(target - nums[i]);
        if (iter == map.end()) {
            map[nums[i]] = i;
        } else {
            res.push_back(i);
            res.push_back(iter->second);
        }
    }
    return res;
}

显然,该算法时间复杂度是O(n),因为一般情况下可以认为hash表能常数复杂度下查找到元素。

是不是觉得很简单,注意,这里使用了map容器,那如果面试官要求你不得借助这种已经写的库该怎么办呢?

我们在文章开头分析过,这其实本质上是一个搜索问题,既然是搜索问题,那么解决该问题的另一种思路就是排序

只要排好序剩下的就简单了,二分查找天然就是有序搜索问题的好帮手

因此接下来的思路就是排序加二分查找

数组

排序加二分查找

思路已经介绍完毕,接下来我们手写快排,但是我们排谁呢?

注意题目要求返回元素下标,因此排序时需要除了数组元素也需要把下标带上。

void quick_sort(vector>& nums, int b, int e) {
    if (b > e) return;

    int i = b - 1;
    for (int k = b; k < e; k++) {
        if (nums[k].second < nums[e].second) {
            swap(nums[++i], nums[k]);
        }
    }
    swap(nums[++i], nums[e]);
    quick_sort(nums, b, i - 1);
    quick_sort(nums, i + 1, e);
}

有的同学可能没有看懂这里的排序方法,甚至认为快排之类的排序算法只能靠死记硬背,其实不是的,这类经典的排序算法背后都有极其重要的算法思想,比如快排背后的思想其实是divide and conquer,这是另一个庞大的话题,限于篇幅,我们会在后续专题详解。

现在快排有了,接下来实现二分查找:

int binary_search(vector>& nums,
                  int b, int e, int target) {
    while(b <= e) {
        int m = (b + e) / 2;
        if (nums[m].second == target) {
            return nums[m].first;
        } else if (nums[m].second < target) {
            b = m + 1;
        } else {
            e = m - 1;
        }
    }
    return -1;
}

二分查找是一个看起来极其容易但写起来却极其容易出错的算法,不信你可以试试看,这里暂时还不打算详细讲解二分,后续还会多次遇到这个算法,当我们积攒了足够多的示例后将系统介绍这里涉及的快排与二分。

有了这些函数后就可以实现主要逻辑了:

vector twoSum(vector& nums, int target) {
    vector res;
    vector> nums_index;
    int size = nums.size();

    for (int i = 0; i < size; i++) {
        nums_index.push_back(pair(i, nums[i]));
    }

    quick_sort(nums_index, 0, size - 1);

    for (int i = 0; i < size - 1; i++) {
        int r = binary_search(nums_index, i + 1, size - 1,
                              target - nums_index[i].second);
        if (r != -1) {
            res.push_back(nums_index[i].first);
            res.push_back(r);
        }
    }
    return res;
}

运行一下发现耗时1s左右,虽然也可以AC,但可以看到运行速度其实是很慢的,还是hash表这种解法速度最快。

可以看到,一道题目其实有很多解法,这里涉及到hash、快排与二分查找,后续我们还会多次见到这些方法,而我们在积攒足够多的示例后会系统性讲解这些数据结构与算法。

--- EOF ---

审核编辑 :李倩


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分