嵌入式技术
导读
本文总结了13种图像增强技术的pytorch实现方法,附代码详解。
使用数据增强技术可以增加数据集中图像的多样性,从而提高模型的性能和泛化能力。主要的图像增强技术包括:
在开始图像大小的调整之前我们需要导入数据(图像以眼底图像为例)。
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/000001.tif')) torch.manual_seed(0) # 设置 CPU 生成随机数的 种子 ,方便下次复现实验结果 print(np.asarray(orig_img).shape) #(800, 800, 3) #图像大小的调整 resized_imgs = [T.Resize(size=size)(orig_img) for size in [128,256]] # plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('resize:128*128') ax2.imshow(resized_imgs[0]) ax3 = plt.subplot(133) ax3.set_title('resize:256*256') ax3.imshow(resized_imgs[1]) plt.show()
灰度变换
此操作将RGB图像转化为灰度图像。
gray_img = T.Grayscale()(orig_img) # plt.figure('resize:128*128') ax1 = plt.subplot(121) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(122) ax2.set_title('gray') ax2.imshow(gray_img,cmap='gray')
标准化
标准化可以加快基于神经网络结构的模型的计算速度,加快学习速度。
从每个输入通道中减去通道平均值
将其除以通道标准差。
normalized_img = T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))(T.ToTensor()(orig_img)) normalized_img = [T.ToPILImage()(normalized_img)] # plt.figure('resize:128*128') ax1 = plt.subplot(121) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(122) ax2.set_title('normalize') ax2.imshow(normalized_img[0]) plt.show()
随机旋转
设计角度旋转图像
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) rotated_imgs = [T.RandomRotation(degrees=90)(orig_img)] print(rotated_imgs) plt.figure('resize:128*128') ax1 = plt.subplot(121) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(122) ax2.set_title('90°') ax2.imshow(np.array(rotated_imgs[0]))
中心剪切
剪切图像的中心区域
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) center_crops = [T.CenterCrop(size=size)(orig_img) for size in (128,64)] plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('128*128°') ax2.imshow(np.array(center_crops[0])) ax3 = plt.subplot(133) ax3.set_title('64*64') ax3.imshow(np.array(center_crops[1])) plt.show()
随机裁剪
随机剪切图像的某一部分
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) random_crops = [T.RandomCrop(size=size)(orig_img) for size in (400,300)] plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('400*400') ax2.imshow(np.array(random_crops[0])) ax3 = plt.subplot(133) ax3.set_title('300*300') ax3.imshow(np.array(random_crops[1])) plt.show()
高斯模糊
使用高斯核对图像进行模糊变换
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) blurred_imgs = [T.GaussianBlur(kernel_size=(3, 3), sigma=sigma)(orig_img) for sigma in (3,7)] plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('sigma=3') ax2.imshow(np.array(blurred_imgs[0])) ax3 = plt.subplot(133) ax3.set_title('sigma=7') ax3.imshow(np.array(blurred_imgs[1])) plt.show()
亮度、对比度和饱和度调节
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) # random_crops = [T.RandomCrop(size=size)(orig_img) for size in (832,704, 256)] colorjitter_img = [T.ColorJitter(brightness=(2,2), contrast=(0.5,0.5), saturation=(0.5,0.5))(orig_img)] plt.figure('resize:128*128') ax1 = plt.subplot(121) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(122) ax2.set_title('colorjitter_img') ax2.imshow(np.array(colorjitter_img[0])) plt.show()水平翻转
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) HorizontalFlip_img = [T.RandomHorizontalFlip(p=1)(orig_img)] plt.figure('resize:128*128') ax1 = plt.subplot(121) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(122) ax2.set_title('colorjitter_img') ax2.imshow(np.array(HorizontalFlip_img[0])) plt.show()
垂直翻转
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) VerticalFlip_img = [T.RandomVerticalFlip(p=1)(orig_img)] plt.figure('resize:128*128') ax1 = plt.subplot(121) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(122) ax2.set_title('VerticalFlip') ax2.imshow(np.array(VerticalFlip_img[0])) # ax3 = plt.subplot(133) # ax3.set_title('sigma=7') # ax3.imshow(np.array(blurred_imgs[1])) plt.show()高斯噪声
向图像中加入高斯噪声。通过设置噪声因子,噪声因子越高,图像的噪声越大。
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) def add_noise(inputs, noise_factor=0.3): noisy = inputs + torch.randn_like(inputs) * noise_factor noisy = torch.clip(noisy, 0., 1.) return noisy noise_imgs = [add_noise(T.ToTensor()(orig_img), noise_factor) for noise_factor in (0.3, 0.6)] noise_imgs = [T.ToPILImage()(noise_img) for noise_img in noise_imgs] plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('noise_factor=0.3') ax2.imshow(np.array(noise_imgs[0])) ax3 = plt.subplot(133) ax3.set_title('noise_factor=0.6') ax3.imshow(np.array(noise_imgs[1])) plt.show()
随机块
正方形补丁随机应用在图像中。这些补丁的数量越多,神经网络解决问题的难度就越大。
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) def add_random_boxes(img,n_k,size=64): h,w = size,size img = np.asarray(img).copy() img_size = img.shape[1] boxes = [] for k in range(n_k): y,x = np.random.randint(0,img_size-w,(2,)) img[y:y+h,x:x+w] = 0 boxes.append((x,y,h,w)) img = Image.fromarray(img.astype('uint8'), 'RGB') return img blocks_imgs = [add_random_boxes(orig_img,n_k=10)] plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('10 black boxes') ax2.imshow(np.array(blocks_imgs[0])) plt.show()
中心区域
和随机块类似,只不过在图像的中心加入补丁
from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import sys import torch import numpy as np import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('image/2.png')) def add_central_region(img, size=32): h, w = size, size img = np.asarray(img).copy() img_size = img.shape[1] img[int(img_size / 2 - h):int(img_size / 2 + h), int(img_size / 2 - w):int(img_size / 2 + w)] = 0 img = Image.fromarray(img.astype('uint8'), 'RGB') return img central_imgs = [add_central_region(orig_img, size=128)] plt.figure('resize:128*128') ax1 = plt.subplot(131) ax1.set_title('original') ax1.imshow(orig_img) ax2 = plt.subplot(132) ax2.set_title('') ax2.imshow(np.array(central_imgs[0])) # # ax3 = plt.subplot(133) # ax3.set_title('20 black boxes') # ax3.imshow(np.array(blocks_imgs[1])) plt.show()
编辑:黄飞
全部0条评论
快来发表一下你的评论吧 !