环境监测应用程序对于生成有关我们周围环境质量的信息是必不可少的,包括环境是变好还是变坏,或者保持不变。环境监测应用程序生成的数据类型在决策制定中很有用,从长远来看可以作为历史数据。在这个项目中,我构建了一个环境监控系统,该系统从附加的传感器收集数据并将其发布到 MQTT 端点,该端点可以被许多最终用户订阅。
我们使用的是带有板载 ESP8285 WiFi 芯片的 Seeed Wio RP2040 模块。整体外形非常紧凑,适合 DIY 可穿戴/便携式项目。
Wio RP2040 模块的齿形安装孔间距与面包板不兼容,因此我们需要使用原型板焊接接头以使其与面包板兼容。
此外,我们需要如下图所示连接一个微型 USB 分接头,以便为模块供电和闪烁。
Grove 温度/湿度/压力和气体传感器通过 I2C 连接连接到模块,如图所示。
Grove Sensor Wio RP2040模块
地线 --------- 地线
VCC。--------- 3.3V 输出
SDA --------- GPIO 6 (I2C1 SDA)
SCL。--------- GPIO 27 (I2C1 SCL)
支持的 MicroPython 固件可以从这里下载。我们可以按照以下步骤将下载的firmware-v1.15.1.uf2 USB Flashing Format文件上传到Wio RP2040 Module。
刷新二进制文件后,Wio RP2040 模块将重新启动,程序将开始运行。我们可以通过串行控制台(CoolTerm/screen/minicom/Putty)以 115200 的波特率连接到 MicroPython REPL。
由于我们想从任何可访问的位置远程访问传感器数据,我们使用虚拟专用服务器 (VPS) 来安装 MQTT 代理。您可以使用任何本地 Linux 机器(例如,Raspberry Pi)来实现相同的目的。请按照以下步骤安装和设置代理和客户端。
1. 在 Linux (Ubuntu) 上安装 Mosquitto MQTT 代理和客户端
$ sudo apt install mosquitto mosquitto-clients
2.设置密码
$ sudo mosquitto_passwd -c /etc/mosquitto/passwd mypassword
3. 使用以下内容编辑配置文件 /etc/mosquitto/conf.d/default.conf。
allow_anonymous false
password_file /etc/mosquitto/passwd
4.重启守护进程
$ sudo systemctl restart mosquitto
或者,如果您想让它更安全,请按照此处的说明进行操作。处理 SSL 连接。
请按照此处链接中的说明安装 Thonny IDE 并将以下两个文件上传到模块。此外,在 main.py 中更改 WiFi 凭据和 MQTT 代理端点/凭据。
文件:main.py
from time import sleep
import network
import mqtt
from machine import Pin, I2C, ADC, UART, SPI, PWM
from bme680 import *
i2c = I2C(1, scl=Pin(27), sda=Pin(6))
bme = BME680_I2C(i2c=i2c, address=0x76)
N1 = network.WLAN_SPI(network.STA_IF)
N1.active(True)
N1.connect("myssid", "mypsk")
sleep(1)
SERVER = 'mqtt_endpoint_url'
USER = 'myuser'
PWD = 'mypassword'
TOPIC = 'sensors/data'
cl = mqtt.MQTTClient(USER, SERVER, mqtt_port = 1883, mqtt_user=USER, mqtt_password=PWD)
sleep(1)
if N1.isconnected():
print("connecting...")
print(cl.connect())
print("connected")
sleep(1)
while True:
try:
temperature = str(round(bme.temperature, 2))
humidity = str(round(bme.humidity, 2))
pressure = str(round(bme.pressure, 2))
gas = str(round(bme.gas/1000, 2))
data = temperature + " " + humidity + " " + pressure + " " + gas
cl.publish(TOPIC, data)
except OSError as e:
print('Failed to read sensor.')
sleep(10)
文件:bme680.py(修改自 Adafruit BME680 库)
import time
import math
from micropython import const
from ubinascii import hexlify as hex
try:
import struct
except ImportError:
import ustruct as struct
_BME680_CHIPID = const(0x61)
_BME680_REG_CHIPID = const(0xD0)
_BME680_BME680_COEFF_ADDR1 = const(0x89)
_BME680_BME680_COEFF_ADDR2 = const(0xE1)
_BME680_BME680_RES_HEAT_0 = const(0x5A)
_BME680_BME680_GAS_WAIT_0 = const(0x64)
_BME680_REG_SOFTRESET = const(0xE0)
_BME680_REG_CTRL_GAS = const(0x71)
_BME680_REG_CTRL_HUM = const(0x72)
_BME280_REG_STATUS = const(0xF3)
_BME680_REG_CTRL_MEAS = const(0x74)
_BME680_REG_CONFIG = const(0x75)
_BME680_REG_PAGE_SELECT = const(0x73)
_BME680_REG_MEAS_STATUS = const(0x1D)
_BME680_REG_PDATA = const(0x1F)
_BME680_REG_TDATA = const(0x22)
_BME680_REG_HDATA = const(0x25)
_BME680_SAMPLERATES = (0, 1, 2, 4, 8, 16)
_BME680_FILTERSIZES = (0, 1, 3, 7, 15, 31, 63, 127)
_BME680_RUNGAS = const(0x10)
_LOOKUP_TABLE_1 = (2147483647.0, 2147483647.0, 2147483647.0, 2147483647.0, 2147483647.0,
2126008810.0, 2147483647.0, 2130303777.0, 2147483647.0, 2147483647.0,
2143188679.0, 2136746228.0, 2147483647.0, 2126008810.0, 2147483647.0,
2147483647.0)
_LOOKUP_TABLE_2 = (4096000000.0, 2048000000.0, 1024000000.0, 512000000.0, 255744255.0, 127110228.0,
64000000.0, 32258064.0, 16016016.0, 8000000.0, 4000000.0, 2000000.0, 1000000.0,
500000.0, 250000.0, 125000.0)
def _read24(arr):
ret = 0.0
for b in arr:
ret *= 256.0
ret += float(b & 0xFF)
return ret
class Adafruit_BME680:
def __init__(self, *, refresh_rate=10):
self._write(_BME680_REG_SOFTRESET, [0xB6])
time.sleep(0.005)
chip_id = self._read_byte(_BME680_REG_CHIPID)
if chip_id != _BME680_CHIPID:
raise RuntimeError('Failed 0x%x' % chip_id)
self._read_calibration()
self._write(_BME680_BME680_RES_HEAT_0, [0x73])
self._write(_BME680_BME680_GAS_WAIT_0, [0x65])
self.sea_level_pressure = 1013.25
self._pressure_oversample = 0b011
self._temp_oversample = 0b100
self._humidity_oversample = 0b010
self._filter = 0b010
self._adc_pres = None
self._adc_temp = None
self._adc_hum = None
self._adc_gas = None
self._gas_range = None
self._t_fine = None
self._last_reading = 0
self._min_refresh_time = 1000 / refresh_rate
@property
def pressure_oversample(self):
return _BME680_SAMPLERATES[self._pressure_oversample]
@pressure_oversample.setter
def pressure_oversample(self, sample_rate):
if sample_rate in _BME680_SAMPLERATES:
self._pressure_oversample = _BME680_SAMPLERATES.index(sample_rate)
else:
raise RuntimeError("Invalid")
@property
def humidity_oversample(self):
return _BME680_SAMPLERATES[self._humidity_oversample]
@humidity_oversample.setter
def humidity_oversample(self, sample_rate):
if sample_rate in _BME680_SAMPLERATES:
self._humidity_oversample = _BME680_SAMPLERATES.index(sample_rate)
else:
raise RuntimeError("Invalid")
@property
def temperature_oversample(self):
return _BME680_SAMPLERATES[self._temp_oversample]
@temperature_oversample.setter
def temperature_oversample(self, sample_rate):
if sample_rate in _BME680_SAMPLERATES:
self._temp_oversample = _BME680_SAMPLERATES.index(sample_rate)
else:
raise RuntimeError("Invalid")
@property
def filter_size(self):
return _BME680_FILTERSIZES[self._filter]
@filter_size.setter
def filter_size(self, size):
if size in _BME680_FILTERSIZES:
self._filter = _BME680_FILTERSIZES[size]
else:
raise RuntimeError("Invalid")
@property
def temperature(self):
self._perform_reading()
calc_temp = (((self._t_fine * 5) + 128) / 256)
return calc_temp / 100
@property
def pressure(self):
self._perform_reading()
var1 = (self._t_fine / 2) - 64000
var2 = ((var1 / 4) * (var1 / 4)) / 2048
var2 = (var2 * self._pressure_calibration[5]) / 4
var2 = var2 + (var1 * self._pressure_calibration[4] * 2)
var2 = (var2 / 4) + (self._pressure_calibration[3] * 65536)
var1 = (((((var1 / 4) * (var1 / 4)) / 8192) *
(self._pressure_calibration[2] * 32) / 8) +
((self._pressure_calibration[1] * var1) / 2))
var1 = var1 / 262144
var1 = ((32768 + var1) * self._pressure_calibration[0]) / 32768
calc_pres = 1048576 - self._adc_pres
calc_pres = (calc_pres - (var2 / 4096)) * 3125
calc_pres = (calc_pres / var1) * 2
var1 = (self._pressure_calibration[8] * (((calc_pres / 8) * (calc_pres / 8)) / 8192)) / 4096
var2 = ((calc_pres / 4) * self._pressure_calibration[7]) / 8192
var3 = (((calc_pres / 256) ** 3) * self._pressure_calibration[9]) / 131072
calc_pres += ((var1 + var2 + var3 + (self._pressure_calibration[6] * 128)) / 16)
return calc_pres/100
@property
def humidity(self):
self._perform_reading()
temp_scaled = ((self._t_fine * 5) + 128) / 256
var1 = ((self._adc_hum - (self._humidity_calibration[0] * 16)) -
((temp_scaled * self._humidity_calibration[2]) / 200))
var2 = (self._humidity_calibration[1] *
(((temp_scaled * self._humidity_calibration[3]) / 100) +
(((temp_scaled * ((temp_scaled * self._humidity_calibration[4]) / 100)) /
64) / 100) + 16384)) / 1024
var3 = var1 * var2
var4 = self._humidity_calibration[5] * 128
var4 = (var4 + ((temp_scaled * self._humidity_calibration[6]) / 100)) / 16
var5 = ((var3 / 16384) * (var3 / 16384)) / 1024
var6 = (var4 * var5) / 2
calc_hum = (((var3 + var6) / 1024) * 1000) / 4096
calc_hum /= 1000
if calc_hum > 100:
calc_hum = 100
if calc_hum < 0:
calc_hum = 0
return calc_hum
@property
def altitude(self):
pressure = self.pressure
return 44330 * (1.0 - math.pow(pressure / self.sea_level_pressure, 0.1903))
@property
def gas(self):
self._perform_reading()
var1 = ((1340 + (5 * self._sw_err)) * (_LOOKUP_TABLE_1[self._gas_range])) / 65536
var2 = ((self._adc_gas * 32768) - 16777216) + var1
var3 = (_LOOKUP_TABLE_2[self._gas_range] * var1) / 512
calc_gas_res = (var3 + (var2 / 2)) / var2
return int(calc_gas_res)
def _perform_reading(self):
if (time.ticks_diff(self._last_reading, time.ticks_ms()) * time.ticks_diff(0, 1)
< self._min_refresh_time):
return
self._write(_BME680_REG_CONFIG, [self._filter << 2])
self._write(_BME680_REG_CTRL_MEAS,
[(self._temp_oversample << 5)|(self._pressure_oversample << 2)])
self._write(_BME680_REG_CTRL_HUM, [self._humidity_oversample])
self._write(_BME680_REG_CTRL_GAS, [_BME680_RUNGAS])
ctrl = self._read_byte(_BME680_REG_CTRL_MEAS)
ctrl = (ctrl & 0xFC) | 0x01
self._write(_BME680_REG_CTRL_MEAS, [ctrl])
new_data = False
while not new_data:
data = self._read(_BME680_REG_MEAS_STATUS, 15)
new_data = data[0] & 0x80 != 0
time.sleep(0.005)
self._last_reading = time.ticks_ms()
self._adc_pres = _read24(data[2:5]) / 16
self._adc_temp = _read24(data[5:8]) / 16
self._adc_hum = struct.unpack('>H', bytes(data[8:10]))[0]
self._adc_gas = int(struct.unpack('>H', bytes(data[13:15]))[0] / 64)
self._gas_range = data[14] & 0x0F
var1 = (self._adc_temp / 8) - (self._temp_calibration[0] * 2)
var2 = (var1 * self._temp_calibration[1]) / 2048
var3 = ((var1 / 2) * (var1 / 2)) / 4096
var3 = (var3 * self._temp_calibration[2] * 16) / 16384
self._t_fine = int(var2 + var3)
def _read_calibration(self):
coeff = self._read(_BME680_BME680_COEFF_ADDR1, 25)
coeff += self._read(_BME680_BME680_COEFF_ADDR2, 16)
coeff = list(struct.unpack(', bytes(coeff[1:39])))
coeff = [float(i) for i in coeff]
self._temp_calibration = [coeff[x] for x in [23, 0, 1]]
self._pressure_calibration = [coeff[x] for x in [3, 4, 5, 7, 8, 10, 9, 12, 13, 14]]
self._humidity_calibration = [coeff[x] for x in [17, 16, 18, 19, 20, 21, 22]]
self._gas_calibration = [coeff[x] for x in [25, 24, 26]]
self._humidity_calibration[1] *= 16
self._humidity_calibration[1] += self._humidity_calibration[0] % 16
self._humidity_calibration[0] /= 16
self._heat_range = (self._read_byte(0x02) & 0x30) / 16
self._heat_val = self._read_byte(0x00)
self._sw_err = (self._read_byte(0x04) & 0xF0) / 16
def _read_byte(self, register):
return self._read(register, 1)[0]
def _read(self, register, length):
raise NotImplementedError()
def _write(self, register, values):
raise NotImplementedError()
class BME680_I2C(Adafruit_BME680):
def __init__(self, i2c, address=0x77, debug=False, *, refresh_rate=10):
self._i2c = i2c
self._address = address
self._debug = debug
super().__init__(refresh_rate=refresh_rate)
def _read(self, register, length):
result = bytearray(length)
self._i2c.readfrom_mem_into(self._address, register & 0xff, result)
if self._debug:
print("\t${:x} read ".format(register), " ".join(["{:02x}".format(i) for i in result]))
return result
def _write(self, register, values):
if self._debug:
print("\t${:x} write".format(register), " ".join(["{:02x}".format(i) for i in values]))
for value in values:
self._i2c.writeto_mem(self._address, register, bytearray([value & 0xFF]))
register += 1
一旦上述代码上传成功并且所有凭据都OK,Wio RP2040 模块将开始以 10 秒的间隔通过 MQTT 发布传感器数据。
我们可以在任何支持 Python3 的计算机上使用 MQTT 客户端订阅传感器数据。我们需要使用 pip 安装以下 python 模块。
$ pip3 install paho-mqtt jupyter jupyterplot
请从 Github 存储库下载 notebooksubscriber.ipynb并运行以下命令。
$ python3 jupyter notebook
打开subscriber.ipynb 并运行它。如果所有凭据都正常,Wio RP2040 模块正在发布,并且 MQTT 代理正在运行,您将在 Jupyter Notebook 中看到实时数据,如下所示。
Wio RP2040 模块是一款功能强大、体积小巧且价格实惠的物联网设备,可用于数据收集和远程监控。可以使用电池或移动电源轻松操作此设置。所有代码都可以在代码部分给出的 Github repo 链接中找到。感谢 Seeed Studio 为我提供 Wio RP2040 模块和 Grove 环境传感器 (BME680)。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !