01、导读
在水系锌离子电池中,受电解质中活性水存在的影响,易导致枝晶生长和副反应。基于此,在锌负极上建造多功能PVA@SR-ZnMoO4(SR指SO42-受体)涂层,可实现在大电流密度下的高库仑效率和长循环稳定性。
02、成果背景
近期,Energy & Environmental Science期刊上发表了一篇题为“Multifunctional SEI-like structure coating stabilizing Zn anode at large current and capacity”的文章。该工作建造了多功能的PVA@SR-ZnMoO4锌负极涂层,PVA@SR外层具有韧性而耐刺穿,ZnMoO4内层可抑制枝晶生长和副反应(电解质中水分子活性),库伦效率高,稳定性好。
03、关键创新
作者建立了无机-有机复合锌负极涂层,构建了内层中的PVA和ZnMoO4之间“相互合作”的Zn2+快速迁移路径,抑制了水分子活性,确保了锌负极的大电流下优异的电化学性能。
04、核心内容解读
方案1纯锌负极和PVA@SR-ZnMoO4类SEI结构涂层改性的锌负极。@ The Authors
借助有机-无机复合材料在锌负极表面涂层,构建了具有类SEI结构的PVA@SR-ZnMoO4锌负极保护层(方案1),可实现优异电化学性能。其中,PVA@SR外层充当了粘合剂,具有韧性,提高了大容量循环下的涂层稳定性。PVA@SR可捕获电解质中的SO42-并增强Zn2+的迁移率和分散性。ZnMoO4内层可抑制枝晶和副反应,提高锌亲和力,以便在PVA凝胶之间建立快速的Zn2+迁移途径,强化离子传导,并打破单个组分的离子迁移极限,保证了高库伦效率及在大电流和大容量下的稳定循环性,为锌负极设计提供了思路。
图1(a) 类SEI结构涂层改性负极的制造工艺示意图。(b) 类SEI结构涂层的SEM图像。无机成分:(c)ZnMoO4的XRD图谱。有机成分:(d)添加不同SR的PVA凝胶的EIS谱,(e)纯PVA和10wt%SR改性PVA的吸水率。(f) PVA@SR凝胶的延展性。@ The Authors
通过连续的浇筑法获得了SEI状的锌负极涂层,其中ZnMoO4和SR的性质决定了其亲锌能力(图1a)。PVA凝胶需由三个冻融步骤成型(图1c),ZnMoO4具有正交晶体特征,涂层厚度约为8 μm (图1b),SR保持了结合SO42-和加速反离子Zn2+迁移的功能。随着SR的加入,PVA凝胶的离子电导率逐渐增加,峰值在10 wt% (1.419×10-2 S cm-1),高于3 M ZnSO4水系电解质的离子电导率(1.182×10-2 S cm-1) (图1d)。此外,SR的加入,影响了PVA凝胶的吸湿性和延展性(图1e),纯的和改性后的PVA凝胶的水含量在初始状态下几乎一致。随着纯PVA凝胶的含水量显著增加,会产生溶胀影响涂层稳定性,而改性PVA凝胶几乎不受影响,仍能紧密地覆盖于负极之上,具有良好负极钝化电阻,延展性也较好(500%增加到750%),表明改性PVA凝胶作为有机组分的无限潜力 (图1f),抗扭曲和弯曲性良好。
图2(a)在1M ZnSO4电解质中1mV s-1扫速下的对称电池.(b)Zn2+迁移数和(c)不同修饰的锌负极的活化能。(d-f)拉曼光谱。(g) 混合内层ZnMoO4/PVA界面迁移路径中锌离子迁移示意图。@ The Authors
凝胶有机组分可实现快速离子传输,在1mV s-1下,纯锌负极在-0.286 V处,显示出明显扩散受限电流平台(-0.013 A) (图2a)。而改性的锌负极,在-0.394 V和-0.535 V之间具有短暂的高电流平台(-0.038A),且易恢复正常,表明类SEI的涂层继承了凝胶的高离子传输能力,并具有大电流循环能力。另外,由Zn2+迁移数测试可知,纯锌负极具有缓慢的Zn2+迁移能力(0.46),归因于电解质中存在六个配位水分子和反离子SO42-的水合Zn2+(图2b)。而ZnMoO4与锌原子的高结合能和SR与SO42-的捕获分别将电解质的含量增加到0.61和0.69,让类SEI涂层改性锌负极离子迁移率达0.81,打破了单涂层改性的锌负极的离子迁移极限(图2c),使其具有协同效应,改性的锌负极的活化能(高电化学活性)较低远低于纯锌负极,优于无机层改性锌和有机层改性锌。Zn2+进入双电层时的脱溶,会消耗大部分能量,为速率控制步骤,影响活化能(Ea)。类SEI结构涂层可加速Zn2+的去溶剂化,有利于大电流循环,抑制了活性水引起的系列副反应。ZnSO4引入PVA后,出现了C-H(1432 cm-1)和O-H(1450 cm-1)信号峰(图2d),表明Zn2+在PVA中以-OH基团为中心的迁移形式,PVA的C-O键弯曲振动峰值(图2e和2f)和CH2剪切模式信号峰值(图2f)几乎消失,证明PVA与ZnMoO4之间存在相互作用,这由PVA的-OH基团和ZnMoO4的Mo-O四面体之间的相互作用引起的,意味着Zn2+水合壳层的弱化以及溶剂化结构从溶剂分离离子对(SSIP)向接触离子对(CIP)的转变,对应于活化能结果。高离子结合能的无机组分能够吸引离子并支持其界面迁移(图2g),无机组分与PVA之间的相互作用可产生特殊界面,支持离子快速迁移(离子电导率)。
图3在50 mA cm-2下,(a)纯Zn和(b)改性Zn的原位光学显微镜。单次沉积的SEM图像:(c,d)0.25 mA cm-2和5.0 mA h cm-2的纯Zn;(e-g)0.25 mA cm-2和5.0 mA h cm-2的修饰Zn和EDS图谱(h)。(i) 计时安培法(CA)图。(j)循环后的XRD图(改性Zn负极)。@ The Authors
类SEI结构涂层对Zn2+迁移具有促进作用,可抑制枝晶和副反应,由原位光学显微镜实时监测锌沉积过程可知。在沉积的初始阶段(1分钟之前),纯Zn和SiO2涂层Zn上出现了气泡和尖锐突起(用虚线圆圈标记)( 图3a和3b)。随着沉积的继续,不均匀的沉积逐渐恶化,出现了树枝状突起,有氢析出,劣于单组分层改性的Zn负极。而类SEI结构涂层,即使电镀时间达到8分钟,表明也相对平坦,无枝晶,电流耐受性高。纯Zn具有树枝状形态,沉积容量仅为0.25 mA h cm-2 (图3c和3d),即使沉积容量为5 mA h cm-2,改性Zn的表面仍保持平坦 (图3e-h),锌的沉积形态从片状变为块状,减少了形成危险枝晶的可能性。在恒定极化电位(-150mV)下,连续电流变化,表明纯Zn中存在严重的枝晶形成行为,因为Zn2+沿着负极表面迁移并在高表面能下积累,触发枝晶生成(图3i)。而ZnMoO4具有高锌亲和力,Zn2+直接原位还原为Zn0,导致密集的成核位点和平滑的沉积形态。此外,Tafel试验中腐蚀电位的正移和腐蚀电流的减少,表明类SEI结构涂层抑制了副反应,即使在200次循环后也无副产物出现(图3j)。
图4(a)纯锌和改性锌在0.5 mA cm-2和0.5 mA h cm-2下循环的库伦效率。(b)对称电池的倍率性能。(c)锌对称电池在10 mA cm-2和10 mA h cm-2下的电压分布。@ The Authors
纯Ti电池循环稳定性较差(50次循环内CE显著下降),劣于SEI结构涂层修饰的Ti (500次循环稳定,CE可提高到99.42%) (图4a)。随着电流密度增加,改性Zn负极的滞后电压小于纯Zn负极(Zn2+迁移加速和沉积/溶解活性增强),纯锌负极易于短路并失效 (图4b)。而改性锌能够在10 mA cm-2和10 mA h cm-2下,改性的锌负极可稳定循环275 h,优于纯Zn负极 (图4c)。即使在2 mA cm-2和2 mA h cm-2下,纯锌负极也表现出较差循环性能(50 h内短路) (图4d),而单组分涂层和SEI结构涂层改性的Zn循环稳定性优异,其中复合材料改性的锌将循环时间增加到2000h,具有相对稳定的滞后电压。改性的锌负极可以在相对稳定的电压下循环1700h,循环稳定性高,额外的PVA外层可以提高涂层稳定性,并提高锌负极循环稳定性(图4e)。
图5(a)纯锌和改性锌在0.5 mA cm-2和0.5 mA h cm-2下循环的CE性能。(b)对称电池的倍率性能。(c)锌对称电池在10 mA cm-2和10 mA h cm-2下的电压分布。@ The Authors
使用纳米纤维α-MnO2作为正极材料组装全电池,循环伏安曲线(CV)有两对氧化还原峰(A1,C1和A2,C2),分别表示H+和Zn2+在α-MnO2正极材料中的嵌入和脱嵌入(图5a),电化学反应可逆性好。改性的锌负极具有更小的氧化还原峰电位间隙,更小的电化学极化和更高的反应性及更快速的电荷转移过程(图5c)。此外,改性的锌负极的峰值电流密度高于纯锌负极,意味着优异的充放电容量。在0.2 A g-1下,改性的锌负极放电容量较高,优于纯锌负极(图5d) 。在不同电流密度下,改性的锌负极的放电容量高于其他,倍率性能出色,且容量波动较小(图5b),长周期稳定性优异,明显优于纯锌负极容量保持率(图5e),反映了其类SEI涂层的外部PVA凝胶作为凝胶电解质外延的优异性。
05、成果启示
作者设计了类SEI结构的PVA@SR-ZnMoO4锌负极涂层,其中凝胶外层可增强涂层稳定性,内层中的ZnMoO4可抑制枝晶和析氢,内层的ZnMoO4和PVA之间建立了快速的Zn2+迁移路径,促进了Zn2+去溶剂化。这项工作为负极表面改性和有机-无机复合材料设计提供了新思路。
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !