运算放大器中功率排序不当:分析风险

描述

在具有多个电源电压的系统中,运算放大器功率 电源必须在任何输入的同时或之前建立 应用信号。如果没有发生这种情况,过压和闩锁 条件可能会发生。

但是,这有时在现实世界中可能很难满足。 应用。本文将介绍运算放大器在 不同的电源时序情况(见表2),分析可能 问题,并提出了一些建议。

电源排序问题可能有所不同

在许多不同的情况下,电源排序问题 可能出现。例如,在一个客户应用中,AD8616可以 配置为缓冲器,在电源之前输入为0 V 建立(图1),负电源在 正电源(存在负电源,不存在正电源)。

电阻器

图1.AD8616测试威廉希尔官方网站 ,施加–3 V V–且不存在V+。

表1显示了所有AD8616引脚在这种条件下的结果。V+ 之前 施加,V+ 引脚和 OUT 引脚上的电压为负。这可能会 不会损坏运算放大器,但如果这些信号连接到端子 在其他尚未完全供电的芯片上(例如,假设 ADC使用相同的V+,其电源引脚通常只能容忍 –0.3 V 最小电压),芯片可能会受到损坏。类似的问题 如果 V+ 在 V– 之前通电,就会发生。

 

引脚 1:
出塔
 
引脚 2:
–INA
 
引脚 3:
+INA
 
引脚 4:
V–
 
引脚5:
+INB
 
引脚 6:
–INB
 
引脚 7:
输出
 
引脚8:
V+
 
–1.627
 
–1.627
 
–0.959
 
–3.000
 
–0.959
 
–1.627
 
–1.627
 
–1.627

 

表2突出显示了电源排序中的一些可能情况。

 

 
 
V+
 
V–
 
放大器负载功率
 
带负载的放大器输出
 
案例1
 
浮动浮动

 
目前
缺席
 


 
否 否

 
否 否

 
案例2
 
0 V 0 V

 
目前
缺席
 


 
否 否

 
否 否

 
案例3
 
正或负 正或负

 
目前
缺席
 


 
否 否

 
否 否

 
案例4
 
正或负 正或负 正或负 正或负
正或负


 
现在 现在


缺席
 
缺席 缺

在场

 
是 否 是



 
否 是


 

运算放大器内的静电放电(ESD)二极管

静电放电也会导致过压事件。大多数操作 放大器具有内部ESD二极管,以防止静电ESD事件。 ESD二极管可以提供分析V+或V-时活动的关键 缺席。图2是ADA4077/ADA4177的简化框图。 表3显示了ADA4077-2/ADA4177-2内部的典型压降 ESD二极管和背靠背二极管。请注意,背靠背二极管 放置在运算放大器的两个输入端子之间,以箝位 最大差分输入信号。

电阻器

图2.ADA4077/ADA4177简化框图

 

  ADA4077
 
ADA4177
 
D1
 
0.838
 
未知
 
D2
 
0.845 未知
D3
 
0.837 未知
 
D4 0.844 未知
 
D5 未知
 
未知
 
D6 未知
 
未知
D7 0.841 0.849
D8 0.842 0.849

 

另请注意,当使用数字万用表测量ADA4077-2的D5/D6时,它会 显示两个输入端子之间没有二极管。其实有两个系列 背靠背二极管之前的电阻,以限制输入电流小于 ±10毫安。内部电阻和背靠背二极管限制差分 输入电压至 ±Vs,以防止基极-发射极结击穿。

ADA4177集成了OVP电池,以实现鲁棒性。它们被放置 在ESD二极管和背靠背二极管之前,因此很难测量 这些二极管由数字万用表。可以测量ADA4177的输出ESD二极管。

评估设置

图3用于测量运算放大器的活动。 通道 A 和 通道B各自配置为缓冲器,通道B同相 输入通过100 kΩ电阻连接到GND。通过使 V+ 缺席 (V–存在)或V+存在(V–不存在),输入和功率相关变量 可以通过安培和电压表测量。通过分析 这些变量,我们可以确定当前的流路。

电阻器

图3.电源排序测试的设置。

情况 1:输入浮动

表4显示了浮动输入和一个无电源的结果。当 V– 存在且不存在 V+,则 V+ 引脚处存在负电压。什么时候 存在 V+ 且不存在 V– 表示 V– 引脚处存在正电压。

对ADA4077-2和ADA4177-2进行测试的结果相似。不大 在输入引脚和电源引脚以及运算放大器处观察电流 当电源轨不存在时,浮动输入仍然是安全的。

情况2:输入接地

表5显示了输入接地时的结果。IB+ 的注意事项,a 负值表示流出 +IN 端子的电流。对于 IOUT, 负值表示流出 –IN 端子的电流。

 


 
条件
 
V+
 
V–
 
ISY+ (毫安)
 
ISY– (mA)
 
IB+ (毫安)
 
呵呵 (毫安)
 
在 (V)
 
输出 (V)
 
ADA4077-2
 
所有电源 15 –15
 
1.02 1.01 –0.00005 0.00007 0.001 –0.008
V+ 不存在 –13.1 –15 0 0.12 –0.00001 0.001 –13.73 –14.42
V– 缺席 15 13.06 0.15 0 –0.00001 0.001 12.93 13.62
ADA4177-2
 
所有电源 15 –15
 
0.98 0.96 –0.00001 0.00002 0 0.001
V+ 不存在 –14.26 –15 0 0.14 –0.00002 0.00137 –13.77 –13.78
V– 缺席 15 12.96 0.14 0 –0.00001 –0.00039 12.26 12.31
  条件
 
V+
 
V–
 
ISY+&(mA)
 
ISY– (mA)
 
IB+ (毫安)
 
呵呵 (毫安)
 
在 (V)
 
输出 (V)
 
ADA4077-2
 
所有电源 15 –15
 
1.01 1 –0.00005 0.00001 0 –0.019
V+ 不存在 –0.846 –15 0 2.30 2.300 –1.60 –0.017 –2.68
V– 缺席 15 0.847 1.78 0 –1.758 1.064 0.12 2.116
ADA4177-2
 
所有电源 15 –15
 
0.98 0.96 –0.00001 0.00002 0 0
V+ 不存在 –11.99 –15 0 9.3 9.300 –0.200 –0.068 –11.98
V– 缺席 15 1.848 1.84 0 –1.823 0.067 0.013 1.851

 

以不存在V+的ADA4077-2为例,V+被箝位到VIN ESD二极管的电压。

VIN通过ESD箝位二极管连接到V+,因此当VIN为0 V时,V+ 为 –0.846 V。

电流路径回路:如图4所示的红色路径,0.7 mA电流 从 GND (+IN) 流向 V+。1.6 mA 电流从接地 (+IN) 流出 通过一个内部电阻器,D5 以及 –IN 和 OUT,则电流流入输出端子。最后是两种潮流 (0.7 mA 和 1.6 mA)组合成 –15 V 的电流,并且组合 电流流回GND (+IN)。

ADA4177-2和ADA4077-2的结果相似。请注意, 在ADA4177-2中,D1由横向的发射极基极实现 PNP 晶体管。晶体管将过压电流从 V+ 到 V–。图4中的ADA4177威廉希尔官方网站 显示9.1 mA电流 从 V+ 返回到 V– ,并在反馈中结合 0.2 mA 电流 路径,导致 9.3 mA 电流流向 –15 V,然后电流回流 到GND。

在输入引脚和电源引脚上均未观察到大电流 ADA4077-2或ADA4177-2(表5)。这些运算放大器可以承受 增益为+1且+IN接地时PU排序的任何顺序。

情况 3:使用输入

正或负信号(+10 V或–10 V)施加到+IN端子 当一个权力缺席时。表6显示没有大电流,因此这些操作 放大器可以承受任何阶次的PU排序,增益为+1,+IN时 停飞时间很短。

电流流路分析与案例2(0 V输入)类似,请参考 图5.

电阻器

图4.V+不存在时的ADA4077/ADA4177电流路径(输入接地)。

电阻器

图5.V+不存在时的ADA4077/ADA4177电流路径(10 V输入)。

 

  条件
 
V+
 
V–
 
ISY+ (毫安)
 
ISY– (mA)
 
IB+ (毫安)
 
呵呵 (毫安)
 
在 (V)
 
输出 (V)
 
ADA4077-2
 
所有电源 15 –15
 
1.03 1.01 0.00098 –0.00003 10 9.97
V+ 不存在且输入为正 9.14 –15 0 2.4 2.396 –1.653 9.99 7.3
V+ 不存在和负输入 –10.83 –15 0 2.41 2.308 –1.651 –10.02 –12.66
V– 不存在和正输入 15 10.83 1.81 0 –1.689 1.055 10.02 12.09
V– 不存在和负输入 15 –9.15 1.77 0 –1.759 1.031 –9.99
 
–7.88
ADA4177-2
 
所有电源 15 –15
 
1.02 1 –0.00099 –0.00009 9.99 9.97
V+ 不存在且输入为正 –9.09
 
–15
 
0 8.86 8.866 –0.113
 
9.92 –9.06
 
V+ 不存在和负输入 –12.33
 
–15
 
0 4.31 4.18 –0.039
 
–10.02
 
–12.32
 
V– 不存在和正输入 15 11.42 1.33 0 –1.2 0.056 9.99 11.43
V– 不存在和负输入 15 –8.33 1.51 0 –1.492 0.062 –9.97 –8.32

 

情况4:带输入和负载在电源/输出

在实际应用中,运算放大器威廉希尔官方网站 可能与另一个威廉希尔官方网站 一起工作。 例如,运算放大器的输出可能驱动负载,或者运算放大器的功率 电源也可以为其他威廉希尔官方网站 供电。这可能会导致问题。

在此测试中,在输出和GND之间连接一个47 Ω电阻或 缺少电源引脚和接地。 表 7 显示了 ADA4077.大电流以红色突出显示。三种可能的情况 假设不存在 V+,可能会带来风险:

情况1:当输入为10 V,OUT负载为47 Ω时,输出为1.373 V。当有23 mA电流从运算放大器的输出引脚流出时(参见图6),电流路径为:

输入信号源提供 30.2 mA 电流

24 mA 电流流经 D1 至 V+,6.2 mA 电流流经 D5 和反馈路径至 OUT

V+ 的 24 mA 电流分为 1 mA(至 V–)和 23 mA(至 OUT)

29.2 mA 电流流经 47 Ω 负载至 GND

电流需要受到限制。通过在+IN处增加一个1 kΩ电阻,输入电流降至6.8 mA。

情况2:当输入为10 V且V+负载为47 Ω时,170 mA电流流入ADA4077-2,并从V+引脚流出至47 Ω电源负载。170 mA 电流会烧毁内部二极管并损坏芯片。通过在+IN处增加一个1 kΩ电阻,输入电流降至8.9 mA。图 7 显示了当前的流路。

 

 

ADA4077-2 条件
 
在 (V) V+
 
V–
 
ISY+ (毫安)
 
ISY– (mA)
 
IB+ (毫安)
 
呵呵 (毫安)
 
输出 (V)
 
V+ 不存在
 
Vo 或 V+ 无负载/正输入 9.99 9.14 –15
 
0 2.4 2.396 –1.653 7.3
Vo 47 Ω 至 GND 9.98 8.77 –15 0 1.00 30.22 –6.174 1.373
Vo 47 Ω 至 GND 和 1 kΩ 9.98 2.389 –15 0 0.76 6.828 –2.104 0.284
V+ 47 Ω 至 GND 9.59 8.01 –15 170 5.05 175 –5.0 6.06
V+ 47 Ω 至 GND 和 1 kΩ 9.94 0.295 –15 6.27 2.69 8.96 –2.69 –1.876
Vo 或 V+ 空载/负输入 –10.02 –10.83 –15 0 2.41 2.308 –1.651 –12.66
Vo 47 Ω 至 GND –9.97 –3.226 –15 0 48.6 –4.65 4.885 –2.501
Vo 47 Ω 至 GND 和 1 kΩ –10.02 –10.83 –15 0 14.30 2.284 –1.629 –0.563

 

电阻器

图6.不存在V+时的ADA4077电流路径(10 V输入和47 Ω输出负载)。

电阻器

图7.不存在V+时的ADA4077电流路径(10 V输入和47 Ω电源负载)。

情况3:当输入为负(–10 V)且OUT负载为47 Ω (参见图8),有48 mA电流流过 芯片。这将产生48 mA× (–2.5 V + 15 V) = 0.6 W功率 耗散。考虑到ADA4077-2的158° C/W θJA,结 温度比环境温度高94.8°。如果有 两个通道或有较重的负载,结温可能 高于 150°,芯片可能会损坏。

 

电阻器不是在输入端增加一个限流电阻器,而是 应该在输出中添加。

 

当V+存在而V-不存在时,也会发生同样的现象。 通过添加外部电阻来限制电流,威廉希尔官方网站 可以 更加健壮。

 

对于ADA4177-2,仅适用情况3。当有大的负数时 输入和重负载同时在输出端,当V+为时 不存在且有53 mA电流流过芯片,功耗 可能会升高,结温升高(参见 到图 9)。通过在输出端增加一个1 kΩ电阻,可以避免风险。

在两个运算放大器中,ADA4177-2比ADA4077-2更可靠。是的 是要求精度和稳健性的应用的首选。

电源排序中的其他运算放大器活动

在运算放大器中,二极管、电阻、 和 OVP 细胞。有些运算放大器没有内部OVP单元,有些没有 背靠背二极管。不同的实现将产生不同的 缺少一个电源时的结果。此外,不同的运算放大器设计 可以产生不同的结果。

例如,ADA4084-2没有内部限流电阻或过压保护 电池,并且具有连接到电源并背靠背的ESD二极管 二极管。表 9 和图 10 显示了 V+ 不存在且 为 10 V 输入。ADA4084的活动和电流路径与 ADA4077-2和ADA4177-2(前面在案例3中讨论过)。然而 由于ADA4084没有内部电阻或OVP电池来限制电流, 60 mA 电流将流入芯片,这可能会造成损坏。

电阻器

图8.不存在V+时的ADA4077电流路径(–10 V输入和47 Ω输出负载)。

电阻器

图9.不存在V+时的ADA4177电流路径(–10 V输入和47 Ω输出负载)。

电阻器

图 10.V+不存在时的ADA4084电流路径(10 V输入)。

 

ADA4177-2 条件
 
在 (V) V+
 
V–
 
ISY+ (毫安)
 
ISY– (mA)
 
IB+ (毫安)
 
呵呵 (毫安)
 
输出 (V)
 
V+ 不存在
 
Vo 或 V+ 为浮动和负输入 –10.02
 
–12.33 –15
 
0 4.31 4.18 –0.039 –12.32
Vo 47 Ω 至 GND –9.97 –3.218 –15 0 51.53 –2.473 2.632 –2.543
Vo 47 Ω 至 GND 和 1 kΩ –10 –10.4 –15 0 9.10 –0.003 0.147 –0.428
ADA4084-2 条件
 
V+
 
V–
 
I+ (毫安)
 
I– (毫安)
 
IB+ (毫安)
 
呵呵 (毫安)
 
在 (V) 输出 (V)
 

 
所有电源 15 –15
 
1.38 1.37 –0.001 –0.0001 10 9.98
V+ 不存在且输入为正 8.71 –15 0 60.1 60.102 –51.89 9.56 7.99

 

在系统应用中,不同的运算放大器,不同的拓扑结构(如 同相放大、反相放大和差分放大), 可以实现不同的负载和外部连接。 如果没有一个电源,则需要评估风险。本文 可以提供有关设置评估威廉希尔官方网站 的指导(图2),如何 分析当前路径,并评估潜在风险。

总结

为避免过压或闩锁情况,运算放大器功率 供应必须同时建立。一般准则是:

在上电序列期间,先打开电源,然后应用 输入端信号

在关机期间,先关闭输入信号,然后关闭 电源

在实际应用中,这些准则可能难以遵守。 这可能会导致问题,尤其是当有输入信号时,并且 设计师需要正确评估风险。一个有效的解决方案是尝试 限制运算放大器的输入电流,使其在数据规格范围内 表。在输入和输出端增加一个限流电阻器有助于 无法同时供电的应用。

我们在无电源应用中测试了三个ADI运算放大器 (ADA4084-2、ADA4077-2 和 ADA4177-2)。与内部集成时 电阻方面,ADA4077-2被证明非常可靠。ADA4177,当 与OVP威廉希尔官方网站 集成,提供最佳的鲁棒性。在应用程序中 电源可能不存在,而外部限流电阻器无法供电的地方 建议使用ADA4177,以避免降低精度。

审核编辑:郭婷

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分