在当今的数据采集系统(DAQ)中,性能界限不断被突破。系统设计人员需要更高的速度、更低的噪声和更好的总谐波失真(THD)性能,所有这些都是可能的,但没有一个是免费的。这些性能改进通常以更高的工作电流为代价,进而导致更大的功耗。然而,在许多应用中,对功耗的敏感性也是一个日益受到关注的问题。原因多种多样。它可能是一个由纽扣电池运行的远程系统,其中主要关注的是电池寿命,或者可能是一个多通道系统,其中来自高通道数和高威廉希尔官方网站 密度的热量集中会导致温度引起的漂移问题。无论哪种情况,最小化电流消耗和功耗都至关重要。系统设计人员必须在高性能和低功耗的竞争优先级之间取得平衡。实现解决方案的一种途径是通过称为动态功率缩放 (DPS) 的过程。
简单地说,DPS是在需要时动态启用电子元件并在不需要时禁用它的过程。图1所示为典型的基于SAR ADC的数据采集子系统。SAR ADC的关键属性之一是其功率与吞吐速率成比例,使其成为功耗敏感型应用非常有吸引力的选择。从历史上看,ADC驱动器和基准电压缓冲器没有共享SAR所享有的自动功率调节功能。它们通常在系统运行时通电并启用,从而消耗多余的功率。假设使能时间足够快,则可以动态驱动放大器掉电引脚,以在ADC转换之间禁用放大器。这就是动态功率缩放。通过将DPS施加到放大器上,可以大大降低其平均电流消耗。对于DPS,放大器静态电流是驱动掉电引脚占空比的函数。理论平均静态电流由下式给出
哪里:
我平均是平均DPS静态电流
我Q_ON放大器的静态电流是否已启用
我Q_OFF放大器的静态电流是否被禁用
t上是放大器使能的时间
tS是采样频率周期
图1.基于SAR ADC的数据采集子系统框图
在本文的其余部分,ADC驱动放大器将是重点,但DPS概念也可以应用于基准电压缓冲器,结果类似。
图2显示了ADC驱动放大器持续使能时的理论效率改进情况。f 处的垂直参考线R表示ADC的功耗等于持续使能的驱动放大器的功耗时的采样频率。在较低的采样速率下,放大器主导功耗,在较高的采样速率下,ADC主导功耗。参考频率(fR) 将根据放大器和所选 ADC 的功耗而变化,但基本概念保持不变。显示了功率调节的同一放大器在三个不同值的t下相对效率改进上.正如预期的那样,较短的t上在给定采样率下提高效率,并允许在更高的采样率下使用 DPS。阴影区域表示,增量缩短的改进面积最大 t上通常向下延伸至低于f的十年左右R.当采样率继续降低到该点以下时,实现了最大的整体节能,但进一步缩短了上可以忽略不计,因为功耗逐渐接近掉电或禁用状态的功耗。
图2.选定温度下DPS的理论放大器功耗上(相对于放大器持续启用)。
为了使用DPS实现最佳性能,系统定时和最小值的确定上至关重要。
图3显示了ADC和驱动器放大器的简化时序图。图1所示的系统时序模块(FPGA、DSP和微控制器)提供适当定时的ADC转换启动(CNV)和放大器关断(PD)信号。SAR ADC在CNV的上升沿启动转换。放大器在ADC采集阶段上电一段时间(t上)之前,然后与CNV的上升沿同步断电。但是正确的时间段是多少上?
图3.放大器和ADC控制信号的简化时序图。
虽然图 2 说明了使用任意时间对 t 进行的概念上,它清楚地表明,只有当最小值上被使用。这是放大器在ADC转换之前必须使能的最短时间,以确保获得准确的结果。任何短于此时间都会导致SNR或THD的侵蚀,而任何更长的时间都不会导致任何性能改进。在实践中,最小值 t上在采样率范围内不是恒定的,必须根据经验确定的独特应用。最小值 t上将因放大器和系统而异。例如,在图1威廉希尔官方网站 中使用ADA4805-1和AD7980的放大器/ADC组合,最小值为”上随着采样速率的增加而降低,在1 kSPS时通常需要~4 μs,在1 MSPS时只需要~600 ns。在低采样速率下,由于掉电状态的时间延长,较长的周期为内部放大器节点提供了更多的放电时间,从而导致更长的导通时间。相反,较短的较高采样率周期不允许进行尽可能多的内部放电。事实上,随着采样速率的增加,放大器的有限关断时间将变得比掉电状态下的时间更长。实际上,放大器在完成关闭之前重新打开。这看起来像是人为地快速开启时间,但在性能数据显示没有下降时会得到验证。
预测潜在的节能时要考虑的最后一点是输入信号频率的影响。到目前为止,DPS的概念已经使用给定放大器的静态电流计算出来。将信号施加到放大器输入端时,动态电流也会随着输入信号频率的增加而增加。如果输入频率足够低,则影响无关紧要。随着频率的增加,放大器输出端的RC网络呈现出更重的负载,需要放大器提供更多的电流来处理信号。
使用前面提到的ADA4805-1和AD7980,将这些概念放在一起,得到图4中的曲线。该图显示了动态功率调节的ADC驱动器放大器在持续使能时相对于同一放大器的功耗(以百分比表示)。绘制了所选输入频率的DPS效率图,以说明较高输入频率对功耗的影响。最小值 t上针对从 1 kSPS 到 1 MSPS 的多个采样速率确定,定义为最短的上这会导致放大器持续使能的情况下SINAD(信噪比和失真)衰减<0.5 dB。该图显示,在低采样率下处理慢速输入信号时,可实现高达95%的节能。但更重要的是,对于更高吞吐量的系统,潜在的节省仍然很大,在100 kSPS时高达65%,在1 MSPS时高达35%。需要注意的是,图4反映了连续采样系统中单个单位增益缓冲器的性能。但是,如前所述,这些DPS概念可以很容易地应用于基准电压缓冲器,并期望获得类似的结果。
图4.具有动态功率缩放的相对放大器功率—实验结果。
虽然DPS是一个相对较新的概念,并且需要考虑设计和时序考虑因素,但初步结果是有希望的。有一点非常清楚,对更高性能和更低功耗的渴望将持续到未来,这将进一步增加对创造性低功耗解决方案的需求。
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !