人工智能
深度神经需要特殊的训练技巧
随着层数变多,网络参数增多,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。
网络的运算过程如图所示:
上图中,网络的运算过程可看作是矩阵的运算。
网络的计算方法就像是嵌套,所以整个神经网络运算就相当于一连串的矩阵运算。
从结构上看每一层的计算都是一样的,也就是用计算机进行并行矩阵运算。这样写成矩阵运算的好处是,你可以使用GPU加速,GPU核心多,可以并行做大量的矩阵运算。
神经网络的本质:通过隐藏层进行特征转换
隐藏层可以看作是对网络输入层输入特征进行特征处理,在最后一层隐藏层进行输出,这时的输出可以看作一组全新的特征,将其输出给输出层,输出层对这组全新的特征进行分类。
举例:手写数字识别
举一个手写数字体识别的例子:
输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示,将图片展平为一个256维的向量作为网络输入。
输出:10个维度,每个维度代表一个数字的置信度(可理解为是该数字的概率有多大)
从输出结果来看,每一个维度对应输出一个数字,代表模型输出为当前分类数字的概率。说明这张图片是2的可能性就是最大的。
在这个问题中,唯一确定的就是,输入是256维的向量,输出是10维的向量,我们所需要找的函数就是输入和输出之间的神经网络这个函数。
从上图看神经网络的结构决定了函数集(function set),通常来讲函数集中的函数越多越复杂,网络的表达空间就越大,越能handle复杂的模式,所以说网络结构(network structured)很关键。
接下来有几个问题:
损失示例
对于模型的评估,我们一般采用损失函数来反应模型的优劣,所以对于神经网络来说,我们可以采用交叉熵(cross entropy)函数来对
全部0条评论
快来发表一下你的评论吧 !