一个令人惊艳的ChatGPT项目,开源了!

描述

最近在GitHub上发现了一个爆火的开源项目,star数一顿暴增。

好家伙,凑近一看,居然还是由微软开源,并且和最近炙手可热的ChatGPT息息相关。

项目的名字叫做:Visual ChatGPT。

https://github.com/microsoft/visual-chatgpt

ChatGPT

https://github.com/microsoft/visual-chatgpt

这个项目最早是3月上旬微软开源的,项目宣布开源后仅用了短短一周,就斩获了2w+ star。

ChatGPT

截止到目前,距离当初项目开源仅仅过去了3周多,仓库star数则来到了27k+,亦可谓是火箭式上涨。

众所周知,ChatGPT自2022年11月推出以来,持续走红。

ChatGPT

ChatGPT具备强大的会话能力,可以理解文字、聊天、写小说、解答问题、编写代码... 但是目前还并不能直接处理或生成图像。

而Visual ChatGPT这个项目则可以把ChatGPT和一系列视觉基础模型(VFM,Visual Foundation Model)给联系起来,以便实现在ChatGPT聊天的过程中来发送和接收图像,也使得ChatGPT能够处理更为复杂的视觉任务。

ChatGPT

讲白了,就是通过Visual ChatGPT,可以把一系列视觉基础模型给接入ChatGPT,使得ChatGPT能胜任更为复杂的视觉处理任务。

ChatGPT

Visual ChatGPT的整体技术架构图如上所示,我们可以清楚地看到ChatGPT和视觉基础模型(VFM,Visual Foundation Model)分别位于其中的位置。

一方面,ChatGPT(或LLM)作为一个通用接口,继续发挥它本身的优势,提供对不同话题的智能理解。

另一方面,基础视觉模型VFM则通过提供特定领域的深入知识来充当领域专家,它们通过交互管理模块(Prompt Manger)进行连接和适配。

这样聊可能比较抽象,我们可以拿官方给的一个例子来进行说明:

ChatGPT

1、首先是用户:输入一张黄色的向日葵图片,并且要求ChatGPT根据该图像预测深度来生成一朵红花,然后再一步一步将其做成卡通画。

2、接着是交互管理模块(Prompt Manger)发挥作用,在它的协调和控制下,VFM模块开始发挥作用:

首先需要运用深度估计模型来预测并生成图像的深度信息;

然后需要运用深度图像模型来生成对应空间深度的红花图像;

最后运用Stable Diffusion的风格迁移模型来完成图像风格的变换。

3、最后Visual ChatGPT系统再将最终结果返回给用户,完成本次对话。

说到这里,有兴趣的小伙伴可以可以看看微软给出的一篇有关Visual ChatGPT的论文:https://arxiv.org/pdf/2303.04671.pdf

ChatGPT

https://arxiv.org/pdf/2303.04671.pdf

里面关于这部分的流程解释得非常详细,而且还给出了多轮对话的案例、以及实验结果,有兴趣的小伙伴可以看看。

审核编辑 :李倩

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分