【先进封装】Underfill的基本特性

制造/封装

517人已加入

描述

【先进封装】Underfill的基本特性

底部填充胶在使用过程中,主要的问题是空洞,出现空洞的原因与其封装设计、点胶工艺、固化参数等相关。而要分析空洞就需要对Underfill的特性有个基本的认识。今天就分别就空洞的特征和Underfill的基本特性做一个介绍。

封装设计

图1 Underfill的基本流程

01 空洞的特征  

了解空洞的特征有助于将空洞与它们的产生原因相联系,其中包括:

①尺寸——空洞是什么形状、大小?

②位置——空洞主要集中在什么位置?边缘、中心、还是随机?

③发生频率——空洞是在特定的时期产生,还是一直产生,或者是随机时间产生?

通过上面的基本信息收集,基本就可以大概有个判断方向,可以知道是点胶问题、固化问题、还是胶水问题了。

02 填料(Filler)

底部填充胶通常配制有60-70%重量的无定形熔融二氧化硅。二氧化硅用于降低底部填充材料的CTE,因为没有填料,固化聚合物的CTE会导致不可接受的焊点应变。通常,底部填充胶配方的CTE为25-30 ppm/℃,与焊料非常接近。填料的不同重量选择,会增加配方的粘度,导致它不会流到芯片底部覆盖整个焊点。 

03 固化(Cure)

底部填充胶被配制成热固性塑料而不是热塑性塑料,这主要是因为无溶剂的高性能热塑性塑料的粘度对于封装工艺来说太高了。作为热固性材料,底部填充胶必须在封装后通过加热进行固化,而完全固化对于优化粘合力、玻璃化转变温度 (Tg) 和模量等性能至关重要。大多数底部填充胶在约 150℃-180℃的温度下选择真空压力烘箱进行固化,以便于除泡,一般会先进行抽真空把大气泡抽出变成小气泡,再使用大压力把小气泡压出。

04 玻璃化转变温度(Tg)

前面我们已经有文章大概介绍了玻璃化转变温度,可以看《一文了解玻璃化转变温度》进行学习,这里就不多赘述了。

05 弹性模量(Elastic Modulus)

底部填充胶的作用是将硅芯片机械连接到其载体上,形成一种结构,消除或显着降低单个焊点上的应力。最佳模量将取决于应用,并受芯片和芯片载体的CTE差异、芯片载体的模量和底部填料的CTE的影响。

06 粘接力(Adhesion)

底部填充胶的粘接力是保证倒装芯片组件可靠性的最重要特性。如果没有持久的粘接力,底部填充胶提供的焊点加固将会是短暂的,一旦底部填充胶失去对一个或多个表面的粘接力,热应力就会直接转移到焊点出现功能性失效。底部填充胶必须对芯片钝化层、硅芯片边缘、芯片载体表面和焊点本身具有很好的粘接力。哪怕暴露在湿气和热应力下,也必须保持粘接力。聚合物的粘合性能通常受水分影响。作为一种小的极性分子,水很容易通过聚合物扩散并吸附在界面上,从而破坏粘接剂的粘接性能。

编辑:黄飞

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分