通过Opencv+Openpose实现体姿态检测

描述

通过一个偶然机会,我了解到了人体姿态解算,在学习K210之余,我便想着通过opencv实现这个功能,查找了很多资料,发现可以利用opencv+openpose实现,接着我又开始找一些资料,在pycharm上部署。

前言

人体姿态估计的一个有趣应用是 CGI(computer graphic image,一种电影制造技术)应用。如果可以检测出人体姿态,那么图形、风格、特效增强、设备和艺术造型等就可以被加载在人体上。

通过追踪人体姿态的变化,渲染的图形可以在人动的时候“自然”地与人“融合”。姿态估计的一个有趣应用是在交互游戏中追踪人体对象的运动。

比较流行的 Kinect 使用 3D 姿态估计(采用 IR 传感器数据)来追踪人类玩家的运动,从而利用它来渲染虚拟人物的动作。

应用:

用于检测一个人是否摔倒或疾病

用于健身、体育和舞蹈等的自动教学

用于理解全身的肢体语言(如机场跑道信号、交警信号等)

用于增强安保和监控

一、环境配置

pycharm2021.2.2

pycharm是一个很好用的软件,刚开始我们必须要配置相应的环境,当然你使用我主页里那篇模型训练的环境也可以,在你运行的时候系统会提示你缺少了什么环境,并让你安装,你直接安装即可。这里我就不过多的赘述了。

1.导入文件

OpenCV

在pycharm上导入相应的文件后,你可以直接点击运行,系统会提示你缺少了什么环境,缺少什么就安装什么,通过终端使用pip安装即可。

需要的留下邮箱即可,我发给你。

2.具体代码

 

# To use Inference Engine backend, specify location of plugins:
# export LD_LIBRARY_PATH=/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/external/mklml_lnx/lib:$LD_LIBRARY_PATH
import cv2 as cv
import numpy as np
import argparse


parser = argparse.ArgumentParser()
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
parser.add_argument('--thr', default=0.2, type=float, help='Threshold value for pose parts heat map')
parser.add_argument('--width', default=368, type=int, help='Resize input to specific width.')
parser.add_argument('--height', default=368, type=int, help='Resize input to specific height.')


args = parser.parse_args()


BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4,
               "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9,
               "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14,
               "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 }


POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"],
               ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"],
               ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"],
               ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"],
               ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]


inWidth = args.width
inHeight = args.height


net = cv.dnn.readNetFromTensorflow("graph_opt.pb")


cap = cv.VideoCapture(args.input if args.input else 0)


while cv.waitKey(1) < 0:
    hasFrame, frame = cap.read()
    if not hasFrame:
        cv.waitKey()
        break


    frameWidth = frame.shape[1]
    frameHeight = frame.shape[0]
    
    net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False))
    out = net.forward()
    out = out[:, :19, :, :]  # MobileNet output [1, 57, -1, -1], we only need the first 19 elements


    assert(len(BODY_PARTS) == out.shape[1])


    points = []
    for i in range(len(BODY_PARTS)):
        # Slice heatmap of corresponging body's part.
        heatMap = out[0, i, :, :]


        # Originally, we try to find all the local maximums. To simplify a sample
        # we just find a global one. However only a single pose at the same time
        # could be detected this way.
        _, conf, _, point = cv.minMaxLoc(heatMap)
        x = (frameWidth * point[0]) / out.shape[3]
        y = (frameHeight * point[1]) / out.shape[2]
        # Add a point if it's confidence is higher than threshold.
        points.append((int(x), int(y)) if conf > args.thr else None)


    for pair in POSE_PAIRS:
        partFrom = pair[0]
        partTo = pair[1]
        assert(partFrom in BODY_PARTS)
        assert(partTo in BODY_PARTS)


        idFrom = BODY_PARTS[partFrom]
        idTo = BODY_PARTS[partTo]


        if points[idFrom] and points[idTo]:
            cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3)
            cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)
            cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED)


    t, _ = net.getPerfProfile()
    freq = cv.getTickFrequency() / 1000
    cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))


    cv.imshow('OpenPose using OpenCV', frame)

 

这里便是主函数的代码。

3.效果展示

 这副图片便是识别的效果,帧率还是很不错的。

三、效果优化

这个帧率虽然可以,但是效果属实有点拉跨。教我K210的学长便指导我进行优化改进,这里附上学长的连接

1.具体代码

 


import cv2
import time
import mediapipe as mp
from tqdm import tqdm


# 导入solution
mp_pose = mp.solutions.pose




mp_drawing = mp.solutions.drawing_utils




pose = mp_pose.Pose(static_image_mode=False,
            #    model_complexity=1,
                    smooth_landmarks=True,
           #        enable_segmentation=True,
                    min_detection_confidence=0.5,
                    min_tracking_confidence=0.5)




def process_frame(img):
    # BGR转RGB
    img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)


    results = pose.process(img_RGB)


    # 可视化
    mp_drawing.draw_landmarks(img, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
    # look_img(img)


    # mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)


    #     # BGR转RGB
    #     img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    #
    #     results = hands.process(img_RGB)


    #     if results.multi_hand_landmarks: # 如果有检测到手
    #
    #         for hand_idx in range(len(results.multi_hand_landmarks)):
    #             hand_21 = results.multi_hand_landmarks[hand_idx]
    #             mpDraw.draw_landmarks(img, hand_21, mp_hands.HAND_CONNECTIONS)


    return img


cap = cv2.VideoCapture(1)


# 打开cap
cap.open(0)


# 无限循环,直到break被触发
while cap.isOpened():
    # 获取画面
    success, frame = cap.read()
    if not success:
        print('Error')
        break


    ## !!!处理帧函数
    frame = process_frame(frame)


    # 展示处理后的三通道图像
    cv2.imshow('my_window', frame)


    if cv2.waitKey(1) in [ord('q'), 27]:
        break




cap.release()




cv2.destroyAllWindows()

 

2.效果展示

 

效果简直太好了

总结

到这里这篇文章就结束了,写这篇博客只是单纯记录自己的学习过程。希望看到这篇博客的你,能够更加坚定的学习。胡适说过一句话我觉得特别好,这里分享给大家。

怕什么真理无穷,进一寸有进一寸的欢喜。

  审核编辑:汤梓红

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分