作者:凯鲁嘎吉
来源:博客园
这篇文章对现有的深度聚类算法进行全面综述与总结。现有的深度聚类算法大都由聚类损失与网络损失两部分构成,博客从两个视角总结现有的深度聚类算法,即聚类模型与神经网络模型。
经典聚类即数据通过各种表示学习技术以矢量化形式表示为特征。随着数据变得越来越复杂和复杂,浅层(传统)聚类方法已经无法处理高维数据类型。为了解决该问题,深度聚类的概念被提出,即联合优化表示学习和聚类。
参考:聚类——K-means - 凯鲁嘎吉 - 博客园
参考:多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning) ,关于“On the eigenvectors of p-Laplacian”目标函数的优化问题 - 凯鲁嘎吉 - 博客园
参考:深度多视图子空间聚类,多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning),字典更新与 K-SVD - 凯鲁嘎吉 - 博客园
参考:聚类——GMM,基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG) - 凯鲁嘎吉 - 博客园
参考:COMPLETER: 基于对比预测的缺失视图聚类方法,Meta-RL——Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices - 凯鲁嘎吉 - 博客园
参考:Deep Clustering Algorithms ,关于“Unsupervised Deep Embedding for Clustering Analysis”的优化问题,结构深层聚类网络,具有协同训练的深度嵌入多视图聚类 - 凯鲁嘎吉 -博客园
参考:Deep Clustering Algorithms - 凯鲁嘎吉 - 博客园 (DEC, IDEC, DFKM, DCEC)
参考:变分推断与变分自编码器,变分深度嵌入(Variational Deep Embedding, VaDE) ,基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG),元学习——Meta-Amortized Variational Inference and Learning,RL——Deep Reinforcement Learning amidst Continual/Lifelong Structured Non-Stationarity - 凯鲁嘎吉 - 博客园
参考:生成对抗网络(GAN与W-GAN) ,ClusterGAN: 生成对抗网络中的潜在空间聚类,双层优化问题:统一GAN,演员-评论员与元学习方法(Bilevel Optimization Problem unifies GAN, Actor-Critic, and Meta-Learning Methods) - 凯鲁嘎吉 - 博客园
参考:从对比学习(Contrastive Learning)到对比聚类(Contrastive Clustering),COMPLETER: 基于对比预测的缺失视图聚类方法 - 凯鲁嘎吉 - 博客园
参考:结构深层聚类网络 - 凯鲁嘎吉 -博客园
参考文献
[1] 第40期:基于深度神经网络的聚类算法——郭西风
[2] 物以类聚人以群分:聚类分析的一些挑战和进展 - 凯鲁嘎吉 - 博客园
[3] A Survey of Deep Clustering Algorithms - 凯鲁嘎吉 - 博客园
[4] Deep Clustering | Deep Learning Notes
[5] 郭西风. 基于深度神经网络的图像聚类算法研究[D]. 国防科技大学, 2020.
作者:凯鲁嘎吉
出处:http://www.cnblogs.com/kailugaji/
全部0条评论
快来发表一下你的评论吧 !