虹科案例 | 虹科Micronor光纤传感器,实现核磁共振新应用!

描述

光纤传感器已成为推动MRI最新功能套件升级和新MRI设备设计背后的关键技术。将患者的某些活动与MRI成像系统同步是越来越受重视的需求。磁场强度随着每一代的发展而增大,因此,组件的电磁透明度在每一代和新应用中变得更加重要。

光学传感器固有的无源性和电磁抗扰性,加上光纤的全绝缘性,对于传感器设计和MRI套件的Zone 4区(MRI扫描仪位置)内外的光信号传输都是理想的。设计能够在MRI设备中的极端电磁场中工作的设备是极具挑战性的。MRI套件不允许使用由铁基材料、镍合金和大多数不锈钢材料制成的常规部件和结构,包括电子设备、电动机和工业常用的其他电气和机电设备。磁性吸引的金属,无论大小,都可能成为有害的抛射物,损坏机器或影响患者/操作员的安全。此外,不合适的材料会产生伪影或扭曲,影响成像结果的质量。

我们的核心重点是开发和应用MRI兼容光纤传感器,这是闭合环路所必需的,特别是用于测量位置、速度和极限

 

 

光纤传感器的

工作原理

 

 

什么是光纤

光纤虽然是由玻璃制成,但是光纤并不脆弱!光纤和电缆被设计成坚固的,并能抵抗物理虐待,特别是过度弯曲和高拉伸负荷。军方在最严格的应用中使用光纤,包括飞机、导弹、卫星和最恶劣的环境--从沙漠到北极,从海底到太空。它本质上只是另一种金属丝——玻璃丝。

 

什么是光纤传感器

如图1所示,光纤传感器是一种将传入设备的物理信号转变为光信号的设备。从这个意义上说,光纤传感器不是一个真正的传感器--它不把一种形式的能量转换成另一种形式--而是一个传感元件,它改变注入传感器的光的特征参数。因此,一个典型的光纤传感器系统由三部分组成--光纤耦合的无源光学传感器、有源询问器或系统接口,以及连接它们的光纤光路或链接。由于其低损耗和长距离无干扰传输的能力,光纤链路提供了将主动询问器/系统接口置于MRI扫描器(4区)区域之外的方法。

传感器

 

光纤传感器是如何工作的

通常,光被发送到传感器,其中光的振幅、波长、偏振等会被改变。其他传感器测量光的飞行时间,而物理特性会改变光路长度。光纤传感器最简单的形式是光学限位开关,其必须确定光路中是否存在物体。在这种情况下,评估光的开/关状态是足够的,并且结果可靠。不幸的是,对于光纤设计者来说,光纤链路内的光学振幅不稳定,无法依靠其进行绝对测量。长期光源退化、光纤弯曲和光纤连接器的不可重复性都会随着时间的推移影响光的传输,环境因素严重影响测量精度。光纤通信链路是可靠的,因为它们传输数字信息,并且所有接收器都包含自动增益控制(AGC)放大器。因此,依赖于光幅度调制的位置传感器被证明是不稳定、不准确和不可靠的

基于光谱的技术更可靠,因为它们不受光强度的影响。无论光水平是低还是高,光纤中的光谱光分布都保持不变。例如,光纤布拉格光栅就是这样一种技术,它会改变光谱行为,但会受到温度的影响,从而导致位置传感器变差。虹科 Micronor MR330系列MRI位置传感器的关键光学创新在于,位置信息嵌入到光谱中,并提供准确、高分辨率的位置信息,不受光纤链路中变化损耗或退化的影响。利用光谱而不是振幅作为信息载体,即使在光纤链路安装退化的情况下,也能确保可靠的精度。

传感器

如图3所示,询问器/控制器通过输入光纤向传感器发送宽带光脉冲。基于旋转码盘的位置,内部光学器件被动地将该光脉冲源转换为通过输出光纤传输的返回信号,其中光谱图案基本上是旋转编码器角度位置的唯一二进制表示。在内部,询问器的功能类似于光谱分析系统,在该系统中,光学返回信号被成像到CCD上,所得光谱特征被分析并转换为角位置码。

传感器

 

虹科MR338 MRI安全位置传感器的第二个创新点是由非金属材料制成,从而完全射频透明。与最初的虹科MR332“金属”工业传感器设计相比,这不是一种简单的非金属材料替代品。由于所需的精度,材料必须在温度、湿度和时间上极其稳定。在内部,传感器精确解析到4µm,因此材料的任何移动都会导致位置读数错误。有许多塑料材料具有合适的低温系数,然而,正如塑料的典型情况一样,它们具有吸湿性,这意味着它们根据水分含量改变尺寸。合适的陶瓷类材料用于尺寸关键光学器件的对准。该零件使用高精度立体光刻制造技术制造。由此产生的虹科 MR338 MRI位置传感器系统提供13位(8192计数或0.044°)单圈分辨率和12位(4096计数)多圈跟踪。同样的光学技术也应用于光纤线性位置传感系统。

 

PART 3

 

应用案例

 

 

传感器

 

虹科MICRONOR MR348

功能性核磁共振成像(fMRI)是一种基于脑部血流和氧代谢成像,利用核磁共振成像观察大脑功能的技术。fMRI的一个研究领域是研究由损伤或中风引起的脑损伤,并对各种治疗和康复技术的有效性进行后续评估。马奎特大学设计了fMRI患者脚踏装置,如图4A所示。使用虹科MICRONOR MR348光纤增量编码器输出来监测踏板的速度和角度位置,实验成功地将运动活动与相应的观察到的皮层大脑活动相关联。一些结果如图4B所示,描绘了将三种运动活动(蹬踏、轻脚和手指敲击)与大脑中特定的皮层活动区域相关的功能图像。这项最初的研究是第一次准确记录与脚踏相关的人类大脑活动,并与fMRI成像相关联。

 

 

PART 4

 

结论

 

 

 

总之,光纤传感器技术是开发先进医学研究所需的MRI安全运动控制系统的关键推动者。光纤传感器本质上是被动的,并且不受磁场的影响。光纤在MRI扫描仪(4区)和MRI控制/设备室(3区)之间提供了理想的全介质传输介质。由合适的材料制成,MRI安全光纤传感器提供电磁透明度,可在MRI扫描仪的极端电磁场强度范围内和周围安全使用。它们坚固、易于安装,即使在MRI孔内使用,也不会产生伪影或影响成像结果

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分