RF/无线
你知道吗?你手中的智能手机,其实是一个强大的无线电收发器。它可以让你用手机打电话、发短信、上网、看视频、玩游戏;也可以帮助你用无人机拍摄美景、控制智能家居……这些都是无线通信的奇妙应用,给人类生活带来了无限的便利和乐趣。
无线通信是采用射频信号作为媒介进行信号传输的技术,要完成无线通信,就首先需要把信号先转换为射频信号。
“射频收发机(RF Transceiver)”就是这样一种装置,它负责把基带信号、模拟信号转化为射频信号,交给放大器、天线输出;还负责把接收到的射频信号还原为基带信号、模拟信号,让这些信息变成可看到的视频、可听到的声音。射频收发机是无线通信中的基础模块,是手机、卫星通信、雷达等无线通信设备中必要的构成部件。
射频收发机的历史可以追溯到19世纪末,当时人们利用电磁波进行无线电报通信。随着科技的进步,射频收发机也不断地演变和创新。从最早的晶体管收发机,到后来的集成威廉希尔官方网站 收发机,再到现在的多频多模收发机,射频收发机的性能、功能和规模都有了巨大的提升。
随着5G的到来,手机系统变的越来越复杂,对射频收发机也提出更高的要求。5G手机中的RF Transceiver芯片是如何一步步演进而来的,未来又有什么演进趋势?接下来,我们将详细介绍射频收发机的基本原理和结构,并探讨它在2G到5G通信中的不断演进。
“射频收发机”一词翻译自Radio Frequency Transceiver。Transceiver一词是发射机(Transmitter)与接收机(Receiver)的合成词,通过这个词的构成就可以看出,Transceiver的功能是完成信号的发射与接收。
在行业应用中,为了与收发机设备整机区分,射频收发机一般被直接称为Transceiver,有时也被简写为XCVR。在一些SoC芯片厂商中,Transceiver芯片因为是一颗射频芯片,所以也被称为RFIC。
虽然Transceiver也是负责信号的发射与接收,但其功能与同样具有发射与接收功能的“射频前端(RF Front-end)”不同。射频前端一般指天线之后,用于处理射频信号的通路、信号强度的部分,包含四大基本模块:功率放大器、低噪声放大器、开关、滤波器。而Transceiver负责将模拟信号和射频信号进行相互转换:在发射时将模拟信号转换为射频信号,在接收时将射频信号转换为模拟信号。
Transceiver与射频前端的关系就像是一对兄弟。哥哥Transceiver头脑清晰,是一家之主,不断地将信息放置在合适的射频通道上;再把合适的射频通道的信号取下来,转换成有用的信息。弟弟射频前端身体条件好,可以把哥哥转换好的射频信号用强大的力气发射出去;同时还可以把非常微小的射频信号小心放大,交给哥哥处理。
哥哥和弟弟一定要配合紧密,才能完成信号的完美收发。如果需要设计和使用好射频前端芯片,就一定要对Transceiver芯片的工作原理有所了解。
Transceiver芯片与基带芯片、调制解调芯片、射频前端芯片在系统中的构成如下图所示。
图:射频系统构成
Transceiver的主要功能是完成模拟信号到射频信号的传输,在了解Transceiver之前,首先要回答的第一个问题就是:为什么要进行射频传输?
射频传输是利用电磁波在空气或其他介质传播的特性,将信息以射频信号形式进行无线传输的过程。射频信号的频率范围一般为3kHz到300GHz。
射频传输有以下几个优点:
射频传输是无线通信技术的基础和核心,它为人类社会带来了巨大的便利和价值。为了实现射频传输,重要的一个步骤就是将日常中的图像、声音、视频等信号,转化为射频信号。模拟信号转换为射频信号的过程,就是射频收发机的主要功能。
自1864年麦克斯韦提出电磁波理论以来,人类一直想象着这个看不见、摸不着的神奇物体在哪里才能用起来。1895年前后,马可尼、波波夫、特斯拉等人均意识到电磁波可以用来实现有线通信的无线化,并设计了无线电发射、接收器原型。1896年,意大利天才无线电工程师马可尼获得了世界上第一个无线电专利,由此也打开了无线电通信快速发展的大门。
在马可尼设计的射频转换威廉希尔官方网站 中,发射机使用摩斯电码键作为输入,产生间歇性电流脉冲,脉冲信号连接至高频振荡器,由此摩斯电码就可以完成对高频信号的调制,调制后的信号通过天线发射到空间中。在接收机中,马可尼使用了金属粉末检波器,通过检波,可以将无线信号转换为可以听见的声音信号,并通过耳机输出。由此,马可尼完成了人类历史上首个“Transceiver”威廉希尔官方网站 。这篇专利也成为马可尼获得诺贝尔物理学奖的重要依据之一。
图:马可尼设计的射频收发威廉希尔官方网站
随后,马可尼对此架构做了改进,加入了调谐威廉希尔官方网站 ,可以改变威廉希尔官方网站 的震荡频率,更加方便了无线电信号的发射与接收。马可尼使用他发明的无线电系统,分别实现了跨英吉利海峡及跨大西洋的通信。
如果说马可尼的发明只是带领人类简单领教无线电的功能的话,1907年,美国工程师德·福雷斯特(De Forest)发明的真空三极管就使得全球范围内的广播、电话、通信成为了可能。德·福雷斯特发现在真空二极管的基础上,增加一个栅极可以进行对二极管电流的控制,根据这个特性,德·福雷斯特发明了放大器、振荡器等威廉希尔官方网站 ,使无线信号的放大和振荡成为可能,进而帮助了无线电广播和远程电话的实现。
外差收发机的英文名是Heterodyne,是人类Transceiver历史上的伟大发明。
外差是通过混频技术,将两个频率的信号混合而创建新的频率信号的技术。两个输入信号通过一个非线性器件(如真空管、晶体管或二极管)进行混频,如两个频率为f1与f2的信号,混频之后会产生f1+f2与f1-f2两个新频率的信号。这种现象叫混频处理,用于实现混频的非线性器件被称为混频器。
通过混频,就可以将原来在空间传播的电磁波,变换为人耳朵可听到的较低的频率范围信号,再通过简单的检波器,就完成了信息的接收。
1901年,雷金纳德·费森登(Reginald Fessenden)展示了这种架构的收发机,虽然此时三极管还未发明,振荡器的工作频率还无法稳定,但这种架构为现代Transceiver奠定了坚实的基础。
图:费森登发明的外差接收威廉希尔官方网站
在发明这个架构后,费森登从希腊单词“Hetero-”(不同的,差异的)和“dyn-”(动力、能力)得到灵感,将此种架构取名为Heterodyne,中文翻译为“外差”。
发现了“外差”现象后,工程师们继续探索。工程师们发现采用更高频率的电磁波传输时,对于某些应用场景有帮助,但工作于高频率的放大器极难设计。工程师就想,既然原来外差的思路是把声音频率的信号,通过混频搬移到高频电磁波频率,那对高频率信号放大的时候,是不是也可以先在比较低的射频频率进行放大,然后再通过频率搬移的方式,将放大后的信号搬移到高频率呢?这样不就可以省去对高频高线性的放大器需求了吗?
以上这个设计理念就是美国工程师爱德华·阿姆斯特朗(Edwin Howard Armstrong)等人在1918年提出的想法。频率搬移过程中,中间预先设定的固定射频频率被称为“中频”(中间频率,IF,Intermediate Frequency),由于这个频率超出了声音可听的范围,是“超声波”(supersonic),所以被命名为“超外差”(Super-Heterodyne)。
图:超外差架构
相比于高频放大式收发机,超外差架构具有高灵敏度、高选择性和稳定性,能适应远程通信对高频率、弱小信号的接收需要。在过去100年时间里,超外差结构在无线通信系统中得到了广泛的应用。
零中频的思路是不再经过IF频率,而是直接将射频信号转化为0Hz频率范围的基带信号。由于相当于在超外差结构中将IF频率设为了0,所以称为零中频方案(Zero IF),又称为直接变频方案(Direct Conversion),以及零差方案(Homodyne)。
图:零中频方案
零中频方案有其独特的优点,比如:
零中频方案再也不需要经过一次中频转换了,看起来非常简洁,但这会给实际设计带来诸多问题:
正因为以上挑战,零中频架构在1924年被提出后,并没有得到大规模的推广。在1932年,工程师们采用本地振荡器与射频频率二者相比较的方式,修正本地振荡器的频率,可以让本地振荡器频率与射频频率锁定,这个威廉希尔官方网站 也就成为了当今锁相环(Phase Locked Loop,PLL)的雏形。
零中频的其他一些问题也随着1958年世界上第一款集成威廉希尔官方网站 被发明之后而被逐渐解决。集成威廉希尔官方网站 的发展使得锁相环威廉希尔官方网站 得以实现更复杂的功能,高动态范围、高补偿特性的威廉希尔官方网站 使得威廉希尔官方网站 可以应对空间大范围波动的射频信号。同时,零中频方案便于单芯片集成的特性使得其与集成威廉希尔官方网站 的快速发展相得益彰。目前,零中频方案在手机、航空电子设备及软件定义无线电系统中得到广泛应用。
经过百年发展,射频Transceiver从原来只能发射/接收一个电火花,发展到如今支持全球频段、多功能、多模式的复杂芯片系统。进入21世纪后,通信协议仍在不断发展,也促使Transceiver技术不断演进。
2G蜂窝标准(以GSM为例)的主要应用是语音通信,2G于1990年后,在全球开始大规模商用。
2G手机的普及伴随着集成威廉希尔官方网站 的快速发展而来。随着摩尔定律的演进,1995年前后CMOS工艺的特征尺寸已经缩小至1um量级。而0.6um特征长度的CMOS器件已经可以用于设计2.4GHz的射频威廉希尔官方网站 ,0.35um的器件甚至可以使5GHz的威廉希尔官方网站 实现成为可能[2]。
仅仅具备单个射频模块的构建能力还不足以展示出CMOS工艺在射频应用中的优势,吸引大家关注CMOS工艺的还是其提供的大规模单片集成可能性。CMOS工艺原来是为数字工艺准备的,并且也可以做一部分模拟威廉希尔官方网站 ,如果连射频也能攻克下来,就可以实现复杂的模数、射频混合威廉希尔官方网站 ,同时做到单芯片的集成。因为这一特性,CMOS工艺实现的2G Transceiver成为当时的研究热点[2][3] 。
CMOS实现全集成的GSM Transceiver并不顺利,早期GSM Transceiver采用BJT技术,并且需要大量的外部器件[4]。随后,一些CMOS工艺设计的单频段的GSM Transceiver被设计出来[5][6],随后才逐渐开始设计出现多频段全集成的CMOS Transceiver芯片。文章[7]中展示了采用0.25um CMOS设计的全集成4频段GSM Transceiver设计,设计采用直接转换的接收机架构,和偏移本振的发射机结构,集成PLL、VCO、混频器、中频滤波器及放大器,芯片面积3.2x3.3mm。
图:采用0.25um CMOS工艺设计的四频GSM收发机
3G时代代表的通信制式是WCDMA,WCDMA是一种FDD频分利用系统,发射机与接收机同时工作在不同频率上,这对单片集成的Transceiver设计提出了更大的挑战。
在FDD系统中,接收机的接收灵敏度受以下四种情况影响,分别是:接收机的噪声系数;Rx接收带内的Tx噪声;Tx大信号的混频噪声;Tx信号的IM2产物。以上几种情况的影响中,有三项与发射机与接收机之间的隔离直接相关。
在3G Transceiver的设计中,可以采用增强LNA IIP2、增加陷波网络的方法解决阻塞问题,提升收发机的接收性能。文章[8]展示了采用0.18um设计的单片集成WCDMA/HSDPA Transceiver,文章利用数字信号处理和可调谐滤波器来消除外部元件,从而实现了高度集成和高收发抑制度的WCDMA收发器。
图:采用0.18um CMOS工艺设计的WCDMA/HSDPA收发机
4G与智能手机几乎在同一时代出现,为了满足智能手机对高数据速率蜂窝通信的需求,越来越多的频段被开辟出来。运营商也在频率资源上展开激烈竞争,结果使得每个运营商掌握的都是非连续和碎片化的多个窄频段。在4G手机中,需要支持的频段可能多达40个。
频段的增加给Transceiver设计带来极大的挑战,在设计中,必须考虑充分的复用,来使子模块的数目维持在合理范围内。
4G Transceiver另一个更大的挑战是CA(Carrier Aggregation,载波聚合)的支持。CA要求多个射频通路同时工作,而这些同时工作的信号之间不可避免的会产生耦合。在设计中,需要将射频通路有效分组。如下图所示支持3CC的LTE接收机系统,Ch1为2.1GHz信号,Ch2为2.3GHz信号,Ch3为700MHz信号。由于Ch1为Ch3信号的三倍频,所以二者之间需要分配至不同的混频器组[9]。
图:支持3CC CA的4G LTE Transceiver设计
5G到来使得无线通信的速率再次提升,Transceiver需要实现Gb/s吞吐量的收发功能。为此5G NR系统中引入了大规模的MIMO、高达200MHz的CA来实现。另外,加上LTE+NR双连接(EN-DC)的需求,5G NR Transceiver的设计难度大大增加。
文章[10]中,MediaTek提供了一种采用12nm CMOS工艺设计的5G Transceiver系统,该系统最多支持2个带间上行CA,6个带间下行CA,支持4x4 MIMO,并且支持NR 200MHz的CA。为了实现以上功能,该Transceiver集成了20个Rx路径,频率覆盖600MHz至6GHz频段。即使经过了内部的LNA复用技术,内部LNA还是达到了28个。Transceiver还使用了大量数字威廉希尔官方网站 ,来达到200MHz的带宽支持。在NR 200MHz/4x4 MIMO/256QAM下,可达到5Gb/s的吞吐量。
图:采用12nm CMOS工艺设计的5G Transceiver
随着协议演进,对终端的通信能力要求越来越高,射频Transceiver的功能从最早只需要完成一个电火花的接收与发射,到现在必须要完成每秒数Gb数据量的传输。这些需求给Transceiver设计带来极大挑战。
CMOS射频集成威廉希尔官方网站 的发展使得这一切成为可能,基于不断演进的CMOS工艺,可以在单颗芯片上实现不同威廉希尔官方网站 模块的集成,进而实现多个频段、多个模式,甚至多个通道的威廉希尔官方网站 集成,使无比复杂的射频收发功能,都集成于方寸之间。
Transceiver的复杂实现,也使得Transceiver设计的门槛不断拉高。在早期3G时代,还存在多家设计射频Transceiver的第三方公司,到5G之后,移动终端的射频Transceiver已被头部SoC平台公司所垄断,如高通、联发科等。
随着Transceiver功能的复杂,也对Transceiver的使用及射频前端其他威廉希尔官方网站 的配合提出了更高的要求。在高通及联发科最新的5G Transceiver使用手册中,除了介绍基本的性能之外,大量篇幅用于介绍Transceiver在CA、EN-DC下使用的注意事项,射频前端配合时需要的注意事项。
在未来,射频Transceiver将面临更多频段、更高带宽、更低功耗、更高集成度等要求。为了满足这些要求,射频Transceiver可能会采用更先进的工艺、更灵活的架构、更智能的控制等技术创新,同时也对Transceiver的应用和使用提出了较高的要求。
全部0条评论
快来发表一下你的评论吧 !