OCR终结了?旷视提出可以文档级OCR的多模态大模型框架Vary,支持中英文,已开源!

描述

想将一份文档图片转换成 Markdown 格式?以往这一任务需要文本识别、布局检测和排序、公式表格处理、文本清洗等多个步骤——

 

 

 

 

这一次,只需一句话命令,多模态大模型 Vary 直接端到端输出结果:

 

无论是中英文的大段文字:

物联网

物联网

还是包含了公式的文档图片:

物联网

又或是手机页面截图:

物联网

甚至可以将图片中的表格转换成 Latex 格式:

 

 

物联网

当然,作为多模大模型,通用能力的保持也是必须的:

 

 

 

Vary 表现出了很大的潜力和极高的上限,OCR 可以不再需要冗长的 pipline,直接端到端输出,且可以按用户的 prompt 输出不同的格式如 Latex、Word、Markdown。通过 LLM 极强的语言先验,这种架构还可以避免 OCR 中的易错字,比如“杠杆”和“杜杆”等, 对于模糊文档,也有望在语言先验的帮助下实现更强的 OCR 效果。

 

 

 

项目一出,引发了不少网友的关注,有网友看后直呼 “kill the game!”

物联网

物联网

那么这样的效果,是如何做到的呢?

背后原理

 

 

目前的多模态大模型几乎都是用 CLIP 作为 Vision Encoder 或者说视觉词表。确实,在 400M 图像文本对训练的 CLIP 有很强的视觉文本对齐能力,可以覆盖多数日常任务下的图像编码。但是对于密集和细粒度感知任务,比如文档级别的 OCR、Chart 理解,特别是在非英文场景,CLIP 表现出了明显的编码低效和 out-of-vocabulary 问题。

 

 

 

受语言的 LLMs 启发,纯 NLP 大模型(如 LLaMA)从英文到中文(外语)时因为原始词表编码中文效率低,必须要扩大 text 词表。那么对于现在基于 CLIP 视觉词表的多模大模型也是一样的,遇到 “foreign language image”,如一页论文密密麻麻的文字,很难高效地将图片 token 化,Vary 提出就是解决这一问题,在不 overwrite 原有词表前提下,高效扩充视觉词表。

物联网

不同于现有方法直接用现成的 CLIP 词表,Vary 分两个阶段:第一阶段先用一个很小的 Decoder-only 网络用自回归方式帮助产生一个强大的新视觉词表;然后在第二阶段融合新词表和 CLIP 词表,从而高效的训练多模大模型拥有新 feature。Vary 的训练方法和模型结构如下图:

物联网

通过在公开数据集以及渲染生成的文档图表等数据上训练,Vary 极大增强了细粒度的视觉感知能力。在保持 Vanilla 多模态能力的同时,激发出了端到端的中英文图片、公式截图和图表理解能力。

 

 

 

另外,原本可能需要几千 tokens 的页面内容,通过文档图片输入,信息被Vary压缩在了 256 个图像 tokens 中。这也为进一步的页面分析和总结提供了更多的想象空间。

 

 

 

目前,Vary 的代码和模型均已开源,还给出了供大家试玩的网页 demo。感兴趣的小伙伴可以去试试了~

 

 

 

项目主页:

 

https://varybase.github.io/

 

     物联网

参考链接

物联网  

https://zhuanlan.zhihu.com/p/671420712

 

 

 

  · ·


原文标题:OCR终结了?旷视提出可以文档级OCR的多模态大模型框架Vary,支持中英文,已开源!

文章出处:【微信公众号:智能感知与物联网技术研究所】欢迎添加关注!文章转载请注明出处。


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分