Cadence总裁:如何在人工智能驱动时代取得成功?

描述

 

3 月 20 日,SEMICON / FPD China 2024 开幕主题演讲在上海浦东嘉里大酒店隆重举行。本次开幕主题演讲汇集了众多全球行业领袖,演讲嘉宾们向现场观众分享了全球产业格局和技术市场趋势等方面的最新观点。

其中,Cadence 总裁兼首席执行官 Anirudh Devgan 博士“如何在人工智能驱动时代取得成功”为主题,向与会者阐述了 AI 对企业目前产品矩阵不断完善的推动力,未来研发方向秉承的思维理念,以及对客户服务体系的最新思考。

1

AI 是推动半导体产业持续发展的重要动力

在演讲中,他首先谈到了推动半导体产业未来发展,促进市场新机会迸发的三大动因:芯片与系统的融合、人工智能和数字孪生。他特别强调,在数字化转型过程中,AI 将有助于芯片公司和系统公司更好地耦合。

就第一个因素来讲,Anirudh Devgan 指出,目前芯片公司和系统公司的融合度越来越高,很多系统公司在做芯片,而芯片厂商也在成为系统公司:“目前 Cadence 的客户中有大约 45% 是系统公司。”就半导体行业本身来讲,他预测到 2030 年,单芯片将有 1 万亿个晶体管,复杂性增加 5 到 10 倍,且半导体市场也将突破 1 万亿产值,电子系统市场将突破 3 万亿。其中,AI 芯片和汽车芯片两大终端领域是推动半导体市场不断发展主要动力:“未来几年,每辆汽车的半导体成本将会增长到 2000 至 4000 美元;同时,训练和推理等应用将助推 AI 芯片在未来增长到 7000 亿美元甚至更高规模。”

Anirudh Devgan 阐述,相对于芯片与系统融合以及人工智能的应用,“数字孪生”这一概念相对来讲谈论较少,但它对 EDA 公司价值非凡:“借助数字孪生仿真技术可以有效降低芯片开发成本,在芯片正式进入制造环节之前,数字孪生的仿真、验证可以让芯片的整个研发周期得到极大的优化。”他还就半导体、航空航天和生物制药这三个领域加以对比,指出半导体行业所需的数字化模拟和验证占比远远超过后两者。航空航天能用到的“数字孪生”占比只有 20%,剩下的验证占比基本只能通过物理测试完成,而生物医药相关占比只有百分之几,但后两个领域在未来同样会推动“数字孪生”仿真技术不断发展。

2

三个圆圈与三层蛋糕

接下来,Anirudh Devgan 先生谈到了 Cadence 的智能系统设计战略,它由三个圆圈组成:“最外圈是数据分析和人工智能,中间圈层是系统,内圈则是芯片。如果把我们的计算软件用在系统和数据上,就是系统设计和仿真,如果用在芯片上,就是 IP 和 EDA 工具——这是 Cadence 的核心业务。”

相应地,Cadence 的智能系统设计战略则有“三层蛋糕”来实现:“中间层是基于物理、化学或生物学原理的仿真和优化,最上层则是 AI 和数据编排处理,而下层则是以 CPU、GPU、FPGA 为代表的加速计算。所有的终端市场都和这三层蛋糕相关,当你吃这个蛋糕时,通常需要把这三层一起吃掉。”

3

EDA 工具与人工智能发展的三个阶段

AI 将如何影响半导体行业以及整个社会?具体到 EDA 工具供应商,AI 导向未来的技术路线又会是怎样的?对此,Anirudh Devgan 博士非常形象地用了互联网发展的三阶段作为类比,认为人工智能也将有类似的三个阶段:AI 赋能芯片的“基础设施建设”阶段,将人工智能应用到芯片设计、系统设计中的第二阶段,以及创建完全开放 AI 新型市场的第三阶段。

Anirudh Devgan 强调,第一阶段相当于互联网时代当年对基础设施网络的铺设,该阶段会有一个较长的周期。讲到此处,Anirudh Devgan 以 AI 推动边缘数据中心演进和芯片 3D 化设计架构,尤其是 Chiplet 的发展为例,介绍了超级计算机以及 Chiplet 带来的芯片设计、互连、封装体系的革命化演进。他指出,英伟达、AMD 这样的芯片设计巨头成为 Cadence 的优秀合作伙伴,他们通过软硬件架构融合的思维模式构建数据中心基础设施;而具体到 Chiplet 技术,各个 die 不同的工艺节点可以通过导入接口 IP 封装在一起,带动了 AI 芯片的不断发展。

Anirudh Devgan 着重介绍了 Cadence 五大产品平台的推出,契合的是人工智能发展的第二阶段,即芯片设计、系统设计的 AI 化。Cadence 目前的 EDA 产品矩阵,如全新数字芯片设计自动化工具 Cerebrus、模拟设计解决方案 Virtuoso Studio、验证平台 Verisium、先进的 PCB 设计布线工具 Allegro,以及多物理场系统分析解决方案 Optimality 等,均和 AI 理念指引下的自动工艺流程紧密相关。

为了更直观地表现 AI 对传统数学算法的颠覆性,他以某家厂商的汽车 CPU 举例。如果该 CPU 有 17 个变量要优化,使用传统数学工具需要运行 400 万次,而 Cadence 的 Cerebrus 用 AI 优化算法模型,计算空间仅需要 200 次,在 10 台机器上运行,一两天内就可以得到所需的结果。

在人工智能发展的第三阶段——开辟新市场,Anirudh Devgan 重点阐述了“数字孪生”技术在模拟和仿真中的巨大作用。他指出,AI 可以快速生成高质量的多物理场数据,而且可以利用生成式 AI 为理想系统设计方案,创建数字孪生可视化效果。

他在现场展示了一个时长一分多钟的视频,展示了 Cadence 与英伟达在 3D 数字孪生可视化平台上的合作。他强调,数据中心的建设者往往由施工团队而非真正的工程团队来完成,巨大的耗电量成为环保痛点。在讲解视频的过程中,Anirudh Devgan 指出,Cadence 的数字孪生技术可以对数据中心的威廉希尔官方网站 板、机架、气流进行建模,辅以多物理场仿真工具,可以极大地优化数据中心的能耗问题。

Anirudh Devgan 还谈到,人工智能在未来的数字生物学中也可以大显身手,药物制造的模拟算法和模拟晶体管架构非常类似,Cadence 通过收购药物设计软件商 OpenEye,加强了企业对药物分子模拟领域的技术实力。他预计,在未来 5 到 10 年内,数字生物领域将经历巨大的变革:“我们目前对 AI 驱动下的新型市场的投资将确保我们处在创新的前沿。”

总结

最后,Anirudh Devgan 博士总结:“我们所专注的计算软件,其核心业务是 EDA 和 IP,将其扩展到系统分析和人工智能领域的这段旅程,我们期待能和合作伙伴一起完成。”




审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分