一、二、三代半导体的区别

模拟技术

2437人已加入

描述

半导体材料与器件发展史

在材料领域的第一代,第二代, 第三代 并不具有“后一代优于前一代”的说法。国外一般会把氮化镓、碳化硅等材料叫做宽禁带半导体;把氮化镓、氮化铝、氮化铟和他们的混晶材料成为氮化物半导体、或者把氮化镓、砷化镓、磷化铟成为III-V族半导体。我国采用的第三代半导体材料的说法是与人类历史上的由半导体材料大规模应用带来的三次产业革命相对应。目前,第三代半导体正在高速发展,第一、二代半导体也仍在产业中大规模应用,发挥第三代半导体无法替代的作用。 那么第三代半导体相较第一代、第二代有哪些进步?这三代半导体之间有什么技术区别?为何氮化镓(GaN)和碳化硅(SiC)在第三代半导体中备受追捧?

 

cpu

 

  一、二、三代半导体什么区别?

  一、材料

  第一代半导体材料,发明并实用于20世纪50年代,以硅(Si)、锗(Ge)为代表,特别是硅,构成了一切逻辑器件的基础。我们的CPU、GPU的算力,都离不开硅的功劳。第二代半导体材料,发明并实用于20世纪80年代,主要是指化合物半导体材料,以砷化镓(GaAs)、磷化铟(InP)为代表。 其中砷化镓在射频功放器件中扮演重要角色,磷化铟在光通信器件中应用广泛……而第三代半导体,发明并实用于本世纪初年,涌现出了碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石(C)、氮化铝(AlN)等具有宽禁带(Eg>2.3eV)特性的新兴半导体材料,因此也被成为宽禁带半导体材料。

  二、带隙

  第一代半导体材料,属于间接带隙,窄带隙;第二代半导体材料,直接带隙,窄带隙;第三代半导体材料,宽禁带,全组分直接带隙。和传统半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。

  三、应用

  第一代半导体材料主要用于分立器件和芯片制造;第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,也是制作高性能微波、毫米波器件的优良材料,广泛应用在微波通信、光通信、卫星通信、光电器件、激光器和卫星导航等领域。第三代半导体材料广泛用于制作高温、高频、大功率和抗辐射电子器件,应用于半导体照明、5G通信、卫星通信、光通信、电力电子、航空航天等领域。

  第三代半导体材料已被认为是当今电子产业发展的新动力。以第三代半导体的典型代表碳化硅(SiC)为例,碳化硅具有高临界磁场、高电子饱和速度与极高热导率等特点,使得其器件适用于高频高温的应用场景,相较于硅器件,碳化硅器件可以显著降低开关损耗。 因此,碳化硅可以制造高耐压、大功率的电力电子器件如MOSFET、IGBT、SBD等,用于智能电网、新能源汽车等行业。与硅元器件相比,氮化镓具有高临界磁场、高电子饱和速度与极高的电子迁移率的特点,是超高频器件的极佳选择,适用于5G通信、微波射频等领域的应用。 第三代半导体材料具有抗高温、高功率、高压、高频以及高辐射等特性,相比第一代硅基半导体可以降低50%以上的能量损失,同时使装备体积减小75%以上。第三代半导体属于后摩尔定律概念,制程和设备要求相对不高,难点在于第三代半导体材料的制备,同时在设计上要有优势。

  第三代半导体现状

  由于制造设备、制造工艺以及成本的劣势,多年来第三代半导体材料只是在小范围内应用,无法挑战硅基半导体的统治地位。目前碳化硅衬底技术相对简单,国内已实现4英寸量产,6英寸的研发也已经完成。氮化镓(GaN)制备技术仍有待提升,国内企业目前可以小批量生产2英寸衬底,具备了4英寸衬底生产能力,并开发出6英寸样品。

  第三代半导体的机遇

  在5G和新能源汽车等新市场需求的驱动下,第三代半导体材料有望迎来加速发展。硅基半导体的性能已无法完全满足5G和新能源汽车的需求,碳化硅和氮化镓等第三代半导体的优势被放大。 另外,制备技术的进步使得碳化硅和氮化镓器件成本不断下降,碳化硅和氮化镓的性价比优势将充分显现。初步判断,第三代半导体未来的核心增长点将集中在碳化硅和氮化镓各自占优势的领域

  第三代半导体-氮化镓(GaN)

  GaN器件主要包括射频器件、电力电子功率器件、以及光电器件三类。GaN的商业化应用始于LED照明和激光器,其更多是基于GaN的直接带隙特性和光谱特性,相关产业已经发展的非常成熟。射频器件和功率器件是发挥GaN宽禁带半导体特性的主要应用领域。 应用优势:体积小、高频高功率、低能耗速度快;5G通信将是GaN射频器件市场的主要增长驱动因素。 5G基站会用到多发多收天线阵列方案,GaN射频器件对于整个天线系统的功耗和尺寸都有巨大的改进。在高功率,高频率射频应用中,获得更高的带宽、更快的传输速率,以及更低的系统功耗此外,GaN射频功率晶体管,可作为新的固态能量微波源,替代传统的2.45GHz磁控管,应用于从微波炉到高功率焊接机等消费电子和工业领域。 2017年全球功率半导体市场规模为327亿美元,预计到2022年达到426亿美元。工业、汽车、无线通讯和消费电子是前四大终端市场。

  第三代半导体-碳化硅(SiC)

  SiC从上世纪70年代开始研发。2001年SiCSBD商用,2010年SiCMOSFET商用。SiCIGBT目前还在研发中。SiC能大大降低功率转换中的开关损耗,因此具有更好的能源转换效率,更容易实现模块的小型化,更耐高温。 SiC功率器件的主要应用:智能电网、交通、新能源汽车、光伏、风电;新能源汽车是SiC功率器件市场的主要增长驱动因素。目前SiC器件在新能源车上应用主要是功率控制单元(PCU)、逆变器,DC-DC转换器、车载充电器等方面。 2017年全球SiC功率半导体市场总额达3.99亿美元。预计到2023年,SiC功率半导体的市场总额将达16.44亿美元。

  审核编辑:黄飞

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分