【GD32F470紫藤派开发板使用手册】第十一讲 SPI-SPI NOR FLASH读写实验

描述

GD32

11.1 实验内容

通过本实验主要学习以下内容:

  • SPI简介
  • GD32F470 SPI简介
  • SPI NOR FLASH——GD25Q32ESIGR简介
  • 使用GD32F470 SPI接口实现对GD25Q32ESIGR的读写操作

11.2 实验原理

11.2.1 SPI简介

SPI(Serial Peripheral interface),顾名思义是串行外设接口,和UART不同的是,SPI是同步通讯接口,所以带有时钟线,而UART是异步通讯接口,不需要时钟线。

SPI通常使用4根线,分别为SCK、MOSI、MISO、NSS(CS):

  • SCK:串列时脉,由主机发出
  • MOSI:主机输出从机输入信号(数据由主机发出)
  • MISO:主机输入从机输出信号(数据由从机发出)
  • NSS:片选信号,由主机发出,一般是低电位有效

SPI默认为全双工工作,在这种工作模式下,主机通过MOSI线发送数据的同时,也在MISO线上接受数据,简单来说就是主机和从机之间进行数据交换。

SPI是一个可以实现一主多从的通讯接口,从机的片选由主机NSS脚来控制:

GD32

每个通讯时刻,只有一个从机NSS被主机选中,选中方式为主机拉低响应的NSS(CS)脚。

SPI的数据线只有一条(虽然有MOSI和MISO,但实际上每个CLK主机都只能发送和接受一个bit),所以称之为单线SPI。从SPI衍生出来的还有4线制SPI(QSPI)和8线制SPI(OSPI)以及其他多线制SPI,这个我们后面具体再聊。

11.2.2 GD32F470 SPI简介

GD32F470的主要特性如下:

◼ 具有全双工和单工模式的主从操作;
◼ 16位宽度,独立的发送和接收缓冲区;
◼ 8位或16位数据帧格式;
◼ 低位在前或高位在前的数据位顺序;
◼ 软件和硬件NSS管理;
◼ 硬件CRC计算、发送和校验;
◼ 发送和接收支持DMA模式;
◼ 支持SPI TI模式;
◼ 支持SPI NSS脉冲模式
◼ 支持SPI四线功能的主机模式(仅在SPI0中)   

以下为GD32F470 SPI的框图:

GD32

我们可以看到GD32F470有一个发送缓冲区和一个接受缓冲区这两个缓冲区都对应的是SPI_DATA寄存器,向SPI_DATA寄存器写数据将会把数据存入发送缓冲区,从SPI_DATA读数据,将从接受缓冲区获得数据。GD32F470还有一个移位寄存器,当主机发送缓冲区被写入数据时,数据将立刻转移到移位寄存器,移位寄存器通过 MOSI 信号线将字节传送给从机,从机也将自己的移位寄存器中的内容通过 MISO 信号线返回给主机。这样,两个移位寄存器中的内容就被交换。外设的写操作和读操作是同步完成的。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机的传输。

SPI数据bit在CLK的有效边沿被锁存,而有效边沿是可以选择的,分别为:

  • 第一个上升沿
  • 第一个下降沿
  • 第二个下降沿
  • 第二个上升沿

通过SPI_CTL0寄存器中的CKPL位和CKPH位来设置有效锁存沿。其中CKPL 位决定了空闲状态时 SCK 的电平, CKPH 位决定了第一个或第二个时钟跳变沿为有效采样边沿。SPI_CTL0 中的 LF 位可以配置数据顺序, 当 LF=1 时, SPI 先发送 LSB 位,当LF=0时,则先发送 MSB 位。SPI_CTL0 中的 FF16 位配置数据长度, 当 FF16=1 时,数据长度为 16位,否则为 8 位。下图为SPI的时序图:

GD32

4线SPI(QSPI)的时序图如下(CKPL=1, CKPH=1, LF=0)  ,我们可以看到QSPI是通过MOSI、MISO、IO2、IO3来进行数据收或发,所以QSPI是工作在半双工模式:

GD32

这里再介绍下SPI的NSS(片选)功能。NSS电平由主机来控制,主机将需要操作的从机NSS拉低,从而使该从机在总线上生效。

主机控制NSS的方式有两种——硬件方式和软件方式。主机硬件NSS模式下,NSS脚只能选择特定IO口(具体见datasheet中IO口功能表),当开始进行数据读写时,NSS自动拉低,这种方式的优点是主机NSS由硬件自动控制,缺点是只能控制一个从机;主机NSS软件模式下,NSS可以使用任意IO口,需要控制哪个从机,软件将对于IO拉低即可,这种方式的优点是可以实现一个主机多个从机的通讯,缺点是软件需要介入控制NSS脚。

注意:GD32F470 主机硬件NSS模式下,一旦开始第一次数据读取,NSS被硬件自动拉低后,将不会自行拉高,从机将处于始终被片选的状态下。

从机获取NSS状态的方式也有两种——硬件方式和软件方式。从机硬件NSS模式下,SPI 从NSS引脚获取 NSS 电平, 在软件NSS 模式(SWNSSEN = 1) 下, SPI 根据SWNSS 位得到NSS电平。 

SPI除了单线全双工模式外,还有很多其他方式,比如可以实现只用MOSI进行数据收和发的半双工通讯,这样就可以省下MISO用作他处了,具体可以参考GD32F4xxx系列官方用户手册。

下面介绍下SPI的发送和接受流程:

发送流程
在完成初始化过程之后, SPI 模块使能并保持在空闲状态。在主机模式下, 当软件写一个数据到发送缓冲区时,发送过程开始。在从机模式下,当 SCK 引脚上的 SCK 信号开始翻转, 且NSS 引脚电平为低, 发送过程开始。 所以, 在从机模式下,应用程序必须确保在数据发送开始前, 数据已经写入发送缓冲区中。
当 SPI 开始发送一个数据帧时, 首先将这个数据帧从数据缓冲区加载到移位寄存器中,然后开始发送加载的数据。在数据帧的第一位发送之后, TBE(发送缓冲区空) 位置 1。 TBE 标志位置 1, 说明发送缓冲区为空, 此时如果需要发送更多数据, 软件应该继续写 SPI_DATA 寄存器。在主机模式下, 若想要实现连续发送功能, 那么在当前数据帧发送完成前, 软件应该将下一个数据写入 SPI_DATA 寄存器中。  

接收流程
在最后一个采样时钟边沿之后, 接收到的数据将从移位寄存器存入到接收缓冲区, 且 RBNE(接收缓冲区非空) 位置 1。软件通过读 SPI_DATA 寄存器获得接收的数据, 此操作会自动清除RBNE 标志位。   

11.2.3 SPI FLASH——GD25Q32ESIGR简介

GD25Q32ESIGR是一款容量为32Mbit(即4Mbyte)的SPI接口的NOR FLASH,其支持SPI和QSPI模式,芯片示意图如下:

GD32

GD25Q32ESIGR管脚定义如下:

GD32

GD25Q32ESIGR内部flash结构如下:

GD32

下面介绍GD25Q32ESIGR的一些功能码。

Write Enable (WREN) (06H) :接受到该命令后,GD25Q32ESIGR做好接受数据并进行存储的准备,时序如下:

GD32

Read Status Register (RDSR) (05H or 35H or 15H)  :读GD25Q32ESIGR的状态,时序如下:

GD32

Read Data Bytes (READ) (03H)  :接受到该命令后,GD25Q32ESIGR将数据准备好供主机读走,时序如下:

GD32

Dual Output Fast Read (3BH)  :使GD25Q32ESIGR切换到QSPI模式,时序如下:

GD32

Quad Output Fast Read (6BH)  :QSPI读命令,时序如下:

GD32

Quad Page Program (32H)   :QSPI写命令,时序如下:

GD32

Sector Erase (SE) (20H)  :Sector擦除命令,时序如下:

GD32

GD25Q32ESIGR就介绍到这里,读者可以在兆易创新官网下载该NOR FLASH的datasheet以获取更多信息。

11.3 硬件设计

紫藤派开发板SPI——NOR FLASH的硬件设计如下:

GD32

从图中可以看出,本实验使用的是普通单线SPI,GD25Q32ESIGR的片选由GD32F470的PF6控制,并采用主机NSS软件模式,GD25Q32ESIGR的SO、SI和SCLK分别和GD32F470的PF8(SPI4_MISO)、PB9(SPI4_MOSI)以及PF7(SPI4_CLK)相连。

11.4 代码解析

11.4.1 SPI初始化函数

在driver_spi.c文件中定义了SPI初始化函数driver_spi_init:

C
void driver_spi_init(typdef_spi_struct *spix)
{
    spi_parameter_struct spi_init_struct;    
    rcu_periph_clock_enable(spix->rcu_spi_x);
    /* spi configure */
    spi_i2s_deinit(spix->spi_x);

    driver_gpio_general_init(spix->spi_cs_gpio);    
    driver_gpio_general_init(spix->spi_sck_gpio);
    driver_gpio_general_init(spix->spi_mosi_gpio);
    driver_gpio_general_init(spix->spi_miso_gpio);        

    if(spix->spi_mode==MODE_DMA)
    {
        if(spix->spi_rx_dma!=NULL)
        {
            if(spix->frame_size==SPI_FRAMESIZE_8BIT){
                driver_dma_com_init(spix->spi_rx_dma,(uint32_t)&SPI_DATA(spix->spi_x),NULL,DMA_Width_8BIT,DMA_PERIPH_TO_MEMORY);
            }
            else{
                driver_dma_com_init(spix->spi_rx_dma,(uint32_t)&SPI_DATA(spix->spi_x),NULL,DMA_Width_16BIT,DMA_PERIPH_TO_MEMORY);
            }
        } 
            
        if(spix->spi_tx_dma!=NULL)
        {
            if(spix->frame_size==SPI_FRAMESIZE_8BIT){
                driver_dma_com_init(spix->spi_tx_dma,(uint32_t)&SPI_DATA(spix->spi_x),NULL,DMA_Width_8BIT,DMA_MEMORY_TO_PERIPH);
            }
            else{
                driver_dma_com_init(spix->spi_tx_dma,(uint32_t)&SPI_DATA(spix->spi_x),NULL,DMA_Width_16BIT,DMA_MEMORY_TO_PERIPH);
            }             
        }            
    }
    
    if(spix->spi_cs_gpio!=NULL)
    {
        driver_gpio_pin_set(spix->spi_cs_gpio);
    }
    
    spi_struct_para_init(&spi_init_struct);
    /* SPI3 parameter config */
    spi_init_struct.trans_mode = SPI_TRANSMODE_FULLDUPLEX;
    spi_init_struct.device_mode = spix->device_mode;
    spi_init_struct.frame_size = spix->frame_size;
    spi_init_struct.clock_polarity_phase = spix->clock_polarity_phase;
    if(spix->device_mode==SPI_MASTER){
        spi_init_struct.nss = SPI_NSS_SOFT;
    }else{
        spi_init_struct.nss = SPI_NSS_HARD;        
    }
    spi_init_struct.prescale = spix->prescale;
    spi_init_struct.endian = spix->endian;
    spi_init(spix->spi_x, &spi_init_struct);

    /* enable SPI3 */
    spi_enable(spix->spi_x);
}
 

11.4.2 SPI轮训接受一个数函数

在driver_spi.c文件中定义了使用轮训方式发送接受一个字节数据函数driver_spi_master_transmit_receive_byte:

C
uint8_t driver_spi_master_transmit_receive_byte(typdef_spi_struct *spix,uint8_t byte)
{
    SPI_DATA(spix->spi_x);
    SPI_STAT(spix->spi_x);      
    driver_spi_flag_wait_timeout(spix,SPI_FLAG_TBE,SET);
    spi_i2s_data_transmit(spix->spi_x,byte);
    DRV_ERROR==driver_spi_flag_wait_timeout(spix,SPI_FLAG_RBNE,SET);
    return spi_i2s_data_receive(spix->spi_x);                
}

上面函数中有带超时功能的等待SPI状态的函数driver_spi_flag_wait_timeout,该函数定义在driver_spi.c:

C
Drv_Err driver_spi_flag_wait_timeout(typdef_spi_struct *spix, uint32_t flag ,FlagStatus wait_state)
{
    uint64_t timeout = driver_tick;    
    while(wait_state!=spi_i2s_flag_get(spix->spi_x, flag)){
        if((timeout+SPI_TIMEOUT_MS) <= driver_tick) {              
            return DRV_ERROR;
        } 
    }
    return DRV_SUCCESS;
}

11.4.3 SPI NOR FLASH 接口bsp层函数

操作NOR FLASH的函数都定义在bsp层文件bsp_spi_nor.c中,这个文件中定义的函数都是针对NOR FLASH特性来实现的,我们选取几个函数进行介绍。

  1. NOR FLASH按sector擦除函数bsp_spi_nor_sector_erase,该函数流程是:使能NOR FLASH的写功能->拉低片选->向NOR FLASH发送sector擦除指令SE(0x20)->从低地址到高地址发送需要擦除的地址->拉高片选->等待NOR FALSH内部操作完成(循环去读NOR FLASH状态,直到读出编程状态为0)
C
void bsp_spi_nor_sector_erase(uint32_t sector_addr)
{
    /* send write enable instruction */
    bsp_spi_nor_write_enable();
    /* sector erase */
    /* select the flash: chip select low */
    bsp_spi_nor_cs_low();
    /* send sector erase instruction */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,SE);
    /* send sector_addr high nibble address byte */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,(sector_addr & 0xFF0000) >> 16);
    /* send sector_addr medium nibble address byte */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,(sector_addr & 0xFF00) >> 8);
    /* send sector_addr low nibble address byte */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,sector_addr & 0xFF);
    /* deselect the flash: chip select high */
    bsp_spi_nor_cs_high();

    /* wait the end of flash writing */
    bsp_spi_nor_wait_for_write_end();
}

2.按page写数据函数bsp_spi_nor_page_write,该函数实现在page范围内写数据,该函数流程是:使能NOR FLASH的写功能->拉低片选->向NOR FLASH发送写指令WRITE(0x02)->从低地址到高地址发送要写的地址(每次进行写数据时,只需要给初始地址即可,写完一个数据后NOR FLASH内部会自动把地址+1)->写数据->拉高片选->等待NOR FALSH内部操作完成(循环去读NOR FLASH状态,直到读出编程状态为0)

C
void bsp_spi_nor_page_write(uint8_t* pbuffer, uint32_t write_addr, uint16_t num_byte_to_write)
void bsp_spi_nor_page_write(uint8_t* pbuffer, uint32_t write_addr, uint16_t num_byte_to_write)
{
    /* enable the write access to the flash */
    bsp_spi_nor_write_enable();

    /* select the flash: chip select low */
    bsp_spi_nor_cs_low();

    /* send "write to memory" instruction */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,WRITE);
    /* send write_addr high nibble address byte to write to */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,(write_addr & 0xFF0000) >> 16);
    /* send write_addr medium nibble address byte to write to */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,(write_addr & 0xFF00) >> 8);
    /* send write_addr low nibble address byte to write to */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,write_addr & 0xFF);

    /* while there is data to be written on the flash */
    while(num_byte_to_write--){
        /* send the current byte */
        driver_spi_master_transmit_receive_byte(&BOARD_SPI,*pbuffer);
        /* point on the next byte to be written */
        pbuffer++;
    }

    /* deselect the flash: chip select high */
    bsp_spi_nor_cs_high();

    /* wait the end of flash writing */
    bsp_spi_nor_wait_for_write_end();
}

3.按buffer写数据函数bsp_spi_nor_buffer_write,该函数实现任意长度数据写入,使用page写函数搭配算法,可以跨page进行写数据:

C
void bsp_spi_nor_buffer_write(uint8_t* pbuffer, uint32_t write_addr, uint16_t num_byte_to_write)
{
    uint8_t num_of_page = 0, num_of_single = 0, addr = 0, count = 0, temp = 0;

    addr          = write_addr % SPI_FLASH_PAGE_SIZE;
    count         = SPI_FLASH_PAGE_SIZE - addr;
    num_of_page   = num_byte_to_write / SPI_FLASH_PAGE_SIZE;
    num_of_single = num_byte_to_write % SPI_FLASH_PAGE_SIZE;

     /* write_addr is SPI_FLASH_PAGE_SIZE aligned  */
    if(0 == addr){
        /* num_byte_to_write < SPI_FLASH_PAGE_SIZE */
        if(0 == num_of_page)
            bsp_spi_nor_page_write(pbuffer,write_addr,num_byte_to_write);
        /* num_byte_to_write > SPI_FLASH_PAGE_SIZE */
        else{
            while(num_of_page--){
                bsp_spi_nor_page_write(pbuffer,write_addr,SPI_FLASH_PAGE_SIZE);
                write_addr += SPI_FLASH_PAGE_SIZE;
                pbuffer += SPI_FLASH_PAGE_SIZE;
            }
            bsp_spi_nor_page_write(pbuffer,write_addr,num_of_single);
        }
    }else{
        /* write_addr is not SPI_FLASH_PAGE_SIZE aligned  */
        if(0 == num_of_page){
            /* (num_byte_to_write + write_addr) > SPI_FLASH_PAGE_SIZE */
            if(num_of_single > count){
                temp = num_of_single - count;
                bsp_spi_nor_page_write(pbuffer,write_addr,count);
                write_addr += count;
                pbuffer += count;
                bsp_spi_nor_page_write(pbuffer,write_addr,temp);
            }else
                bsp_spi_nor_page_write(pbuffer,write_addr,num_byte_to_write);
        }else{
            /* num_byte_to_write > SPI_FLASH_PAGE_SIZE */
            num_byte_to_write -= count;
            num_of_page = num_byte_to_write / SPI_FLASH_PAGE_SIZE;
            num_of_single = num_byte_to_write % SPI_FLASH_PAGE_SIZE;

            bsp_spi_nor_page_write(pbuffer,write_addr, count);
            write_addr += count;
            pbuffer += count;

            while(num_of_page--){
                bsp_spi_nor_page_write(pbuffer,write_addr,SPI_FLASH_PAGE_SIZE);
                write_addr += SPI_FLASH_PAGE_SIZE;
                pbuffer += SPI_FLASH_PAGE_SIZE;
            }

            if(0 != num_of_single)
                bsp_spi_nor_page_write(pbuffer,write_addr,num_of_single);
        }
    }
}

4.按buffer读数据函数bsp_spi_nor_buffer_read,该函数实现任意地址读数据,该函数流程是:拉低片选->向NOR FLASH发送读指令READ(0x03)->从低地址到高地址发送要读的地址(每次进行读数据时,只需要给初始地址即可,读完一个数据后NOR FLASH内部会自动把地址+1)->读数据->拉高片选:

C
void bsp_spi_nor_buffer_read(uint8_t* pbuffer, uint32_t read_addr, uint16_t num_byte_to_read)
{
    /* select the flash: chip slect low */
    bsp_spi_nor_cs_low();

    /* send "read from memory " instruction */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,READ);

    /* send read_addr high nibble address byte to read from */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,(read_addr & 0xFF0000) >> 16);
    /* send read_addr medium nibble address byte to read from */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,(read_addr& 0xFF00) >> 8);
    /* send read_addr low nibble address byte to read from */
    driver_spi_master_transmit_receive_byte(&BOARD_SPI,read_addr & 0xFF);

    /* while there is data to be read */
    while(num_byte_to_read--){
        /* read a byte from the flash */
        *pbuffer = driver_spi_master_transmit_receive_byte(&BOARD_SPI,NOR_DUMMY_BYTE);
        /* point to the next location where the byte read will be saved */
        pbuffer++;
    }

    /* deselect the flash: chip select high */
    bsp_spi_nor_cs_high();
}

11.4.4 main函数实现

以下为main函数代码:

C
int main(void)
{
    //延时、共用驱动部分初始化 
    driver_init();
          
    //初始化LED组和默认状态
    bsp_led_group_init();
    bsp_led_on(&LED1);
    bsp_led_off(&LED2);     

    //初始化UART打印
    bsp_uart_init(&BOARD_UART);

    //初始化SPI    
    bsp_spi_init(&BOARD_SPI);
  
    //初始化SPI NOR     
    bsp_spi_nor_init();
  
    printf_log("\n\rSPI Flash:GD25Q configured...\n\r");

    //读取flash id
    flash_id = bsp_spi_nor_read_id();
    printf_log("\n\rThe Flash_ID:0x%X\n\r",flash_id);

    //比对flash id是否一致
    if(SFLASH_4B_ID == flash_id || SFLASH_16B_ID == flash_id)
    {
        printf_log("\n\rWrite to tx_buffer:\n\r");

        //准备数据
        for(uint16_t i = 0; i < BUFFER_SIZE; i++){
            tx_buffer[i] = i;
            printf_log("0x%02X ",tx_buffer[i]);
            if(15 == i%16){
                printf_log("\n\r");
            }
        }
        printf_log("\n\r");
        printf_log("\n\rRead from rx_buffer:\n\r");
        
        //擦除要写入的sector
        bsp_spi_nor_sector_erase(FLASH_WRITE_ADDRESS);
        //写入数据 
        bsp_spi_nor_buffer_write(tx_buffer,FLASH_WRITE_ADDRESS,TX_BUFFER_SIZE);

        //延时等待写完成
        delay_ms(10);

        //回读写入数据
        bsp_spi_nor_buffer_read(rx_buffer,FLASH_READ_ADDRESS,RX_BUFFER_SIZE);
        
        /* printf_log rx_buffer value */
        for(uint16_t i = 0; i < BUFFER_SIZE; i++){
            printf_log("0x%02X ", rx_buffer[i]);
            if(15 == i%16){
                printf_log("\n\r");
            }
        }
        printf_log("\n\r");
        //比较回读和写入数据
        if(ERROR == memory_compare(tx_buffer,rx_buffer,BUFFER_SIZE)){
            printf_log("Err:Data Read and Write aren't Matching.\n\r");            
            //写入错误
            /* turn off all leds */
            bsp_led_on(&LED2);
            /* turn off all leds */
            bsp_led_on(&LED1);           
            while(1);
        }else{
            printf_log("\n\rSPI-GD25Q16 Test Passed!\n\r");
        }
    }else{ //ID读取错误
        /* spi flash read id fail */
        printf_log("\n\rSPI Flash: Read ID Fail!\n\r");
        /* turn off all leds */
        bsp_led_on(&LED2);
        /* turn off all leds */
        bsp_led_on(&LED1);           
        while(1);
    }

    while(1){
        /* turn off all leds */
        bsp_led_toggle(&LED2);
        /* turn off all leds */
        bsp_led_toggle(&LED1);        
        delay_ms(200);
    }
}

main函数中实现了向特定NOR FLASH地址写数据,并回读出来,并将写入的数据和回读出来的数据进行对比,看是否写入成功。

11.5 实验结果

将本实验例程烧录到GD32F470紫藤派开发板中,将会显示对外部SPI flash写入以及读取的数据以及最终的校验结果,如果写入读取校验正确,将会显示SPI-FLASH Test PASS,LED1和LED2将会交替闪烁。

 

教程GD32 MCU方案商聚沃科技原创发布,了解更多GD32 MCU教程,关注聚沃科技官网

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分