LED照明中频闪的产生及如何减少

LED照明

77人已加入

描述

  频闪是早期荧光灯很常见的一个问题。然而,随着时间的推移,日益强大的电子镇流器已经在很大程度上消除了频闪的干扰,让人感受不到频闪。如今LED(发光二极管)已涉足照明的各个领域,包括通用照明,人们再次面临频闪的问题。而想要实现尽可能无频闪的灯光,LED驱动的作用至关重要。

  频闪是光的强度或亮度在一定时间周期内的变化。在许多照明应用中都会出现频闪,包括电视上的慢动作拍摄(尤其是体育频道),隧道照明,普通照明的各个领域以及使用快速旋转机械的工作场所。频闪会影响人体健康,影响程度取决于频闪的频率以及个人对频闪的敏感度。虽然高频率频闪不会对人体产生显著的影响,但120赫兹以下的低频率频闪则很容易影响到人体健康。

  本文重点介绍0-120赫兹这个大多数人觉得讨厌的低频率频闪。

  频闪如何产生的?

  产生频闪的原因很多。对于控制装置制造商而言,纹波电流就是其中的原因之一,是产生频闪的一个重要罪魁祸首。纹波电流是整流和滤波后依然存在的交流成分。纹波电流叠加在直流上,具有不同的频率和曲线。该交流成分使LED模组的功率发生波动,反过来又会使亮度发生变化。叠加交流的数量及频率是产生频闪的决定性因素。

  LED光源所使用的载波技术和灯具设计也是产生频闪的重要因素。例如,如果将磷光体用作LED光源的转换器材料,则该层材料具有电容效应,会消除一小部分叠加交流。

  LED驱动

  图1:使用幅度差以及高于和低于平均值的部分来计算频闪

  个人感知

  由于个体的活动类型以及对频闪敏感度的不同,频闪所产生的影响也不经相同,或让人感到反感,或让人注意力不集中,亦或损害人的健康,即使亮度波动超出感知阈值(间接感知)。在这里,余光常常起着重要的作用,因为它使所有的运动看起来更具强烈感,无论是频闪或移动体。

  频闪被感知的程度还取决于个人感知,这与视力、人眼视网膜的感应力以及当时的照明条件不无相关。大多数人对10赫兹左右的频率最为敏感,与此同时这部分人对70赫兹以上的变化并不敏感。尽管如此,对光敏感的人还是会有疲劳、头疼等感觉,因为高频频闪会产生刺激性频闪效应。

  据电气和电子工程师协会1789-2015年标准,对于大家熟知的频闪现象,频闪发生的频率及其在各种频率范围内的影响,驱动芯片的设计建议,目前都有详细的解释。如频闪发生在70赫兹以内或不易察觉的范围内,不同的限值适用。10赫兹左右的频率属于最敏感的范围,在这个范围内只会感受到0.5%的频闪;如频闪频率到达60赫兹,则有60%的频闪可以感受到,换句话说这种频率下所感受到的频闪强度是最敏感频率范围内所感受到的120倍。因此,这些限值在该范围内相当高。

  LED驱动

  图2:作为常规频闪测量-在这种情况下,通过纹波电流进行测量-锐高的驱动显示,所测量到的值保持在相对感知阈值以下

  优质驱动芯片可大大减少频闪情况发生

  受电源电压整流的影响(欧洲标准为50赫兹),LED驱动中有很大一部分纹波电流的频率是电源频率的两倍,约100赫兹。不仅如此,与传统光源相比,LED可以立即将工作电流转换为光,无需进行任何大型平滑特效。为了实现尽可能无闪的操作效果,优质LED驱动以及驱动、调光器和LED模组三者之间的兼容性缺一不可。数据表中的信息通常为评估控制装置的方法,比如通过“输出电流纹波”或“叠加交流”评估。通常情况下,所指示的值是100赫兹。该值越低,频闪的风险越低。

  如今的高品质驱动,如锐高LED驱动,可最大限度地减少在输出纹波,与完美匹配的组件一起工作。优质组件都有明确定义的参数,这些参数在实验室中不断被检测。制造商尤其注重10赫兹左右的临界频率范围。锐高正在寻求定义新的市场标准。对于高纹波的老一代设备,现在只推荐给那些不需要人一直在场的应用。

  LED驱动

  图3:电气和电子工程师协会1789-2015年标准首次提出降低人体健康风险的全面建议。该图显示的是对人体健康风险较低或无明显风险(绿色部分)的整个频率范围内的频闪限值曲线。

  推荐的调光方法

  虽然LED本身不具频闪风险,但进行LED调光,尤其是通过脉冲宽度调光会加重频闪,甚至会导致一开始就出现频闪。为了避免频闪,采用其他调光方式,如模拟调光是可行的。为了抵消低调光值模拟调光的缺点,混合调光法正成为理想之选。

  结论

  驱动里的纹波电流数据是频闪风险的第一指示。如想获得更多可靠信息以便做出一个明智决定,可查看整个灯具上的数据。通常灯具制造商会提供所用驱动、叠加交流电量、调光方法以及频率曲线的详细信息。尤其是0到120赫兹之间的频率曲线,最能说明频闪的风险。10和70赫兹之间的频率范围值得特别考虑,因为这个范围内的频闪对人体健康的影响最大。更重要的是,完全避免PWM调光基本上可以保证无频闪的环境条件。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分