智能传感器中由于欠采样引起的噪声

MEMS/传感技术

1293人已加入

描述

  很多系统开发人员喜欢使用完全集成式“智能传感器”,因为这些器件通常可方便地给出数字输出,对于偶尔使用的用户来说可以规避乏味的模拟威廉希尔官方网站 设计挑战所带来的风险。虽然避开模拟威廉希尔官方网站 设计问题的动机可以理解,但系统集成人员了解智能传感器的重要模拟特点也是非常关键的—比如带宽和噪声,因为这些因素会影响重大的系统级决策,如数据采样和处理速率。

  以自主驾驶车辆(AV)平台为例,该平台采用ADIS16460的陀螺仪作为其导航控制系统(GNC)中的反馈检测元件。如果开发人员未能考虑这些陀螺仪的330Hz带宽,那么就可能完全根据AV平台的运动配置来设置角速率反馈环路中的采样速率。

  例如,假设GNC工程师相信可以将AV平台的运动配置限制在4Hz频谱成分以内,那么以40 SPS速率进行数据采集就会看起来是一种对于GNC角速率反馈环路的采样速率而言较为保守的做法。不幸的是,如果不进行任何前置滤波,那么这种“保守”的做法实际上会欠采样330Hz带宽,而这样就会有很多劣势。图1显示了其中一个劣势,即对输出奈奎斯特频段(20Hz)内的噪声能量进行重整分配。

  图1中,绿色曲线表示自然速率噪声密度(RND),而红色曲线表示同样的总噪声能量分布在较窄的20 Hz带宽内的结果。

  智能传感器

  图1. ADIS16460角速率噪声密度

  假设总噪声平均分布在低采样速率( 40 SPS )奈奎斯特频段内,通过下述关系式可以预测,得到的速率噪声密度将大约为0.017°/sec/√Hz:

  智能传感器

  这意味着使用2048 SPS全采样速率时,对40 SPS数据的任何数字滤波都将导致产生比同类滤波器多大约4倍的噪声。根本问题在于,对于系统集成人员而言,明智的做法是考虑智能传感器中的关键模拟属性,通过适当选择采样速率以及正确设计数字滤波器,便能有机会进行性能优化。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分