电子常识
对于直接转矩控制来说,一般文献认为它由德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi于1985年首先分别提出的。对于磁链圆形的直接转矩控制来说,其基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。在控制思想上与矢量控制不同的是直接转矩控制通过直接控制转矩和磁链来间接控制电流,不需要复杂的坐标变换,因此具有结构简单、转矩响应快以及对参数鲁棒性好等优点。图1为典型的圆形磁链直接转矩控制系统结构图。
图1 圆形磁链直接转矩控制系统控制框图
事实上,1977年A·B·Plunkett曾经在IEEE的工业应用期刊上提出了类似于目前直接转矩控制的结构和思想的直接磁链和转矩调节方法,在这种方法中,转矩给定与反馈之差通过PI调节得到滑差频率,此滑差频率加上电机转子机械速度得到逆变器应该输出的电压定子频率;定子磁链给定与反馈之差通过积分运算得到一个电压与频率之比的量,并使之与定子频率相乘得到逆变器应该输出的电压,最后通过SPWM方法对电机进行控制。
图2是直接磁链和转矩调节的控制框图,比较图1和图2可以看出两者都是对转矩和磁链进行直接控制,本质上都是对瞬时滑差进行了控制,所不同的是前者通过Bang-Bang控制的方法获得电压矢量,后者通过PI调节的方式获得电机输入控制电压。
图2 直接磁链和转矩调节系统控制框图
直接转矩控制提出来将近有20年了,目前在此基础上已经发展出来了多种控制策略及其数字化实现方案、磁链观测以及速度辨识的方法,本文将对它们进行分类,并作分析和比较。
直接转矩控制当初在德国提出来是为了解决大容量的机车控制的问题,其中最重要的一点就是要降低开关频率。目前以GTO作为逆变器的功率器件时,其开关频率一般不超过200Hz,使用IGBT时,一般也不能超过500Hz。因此以上的各节所描述的直接转矩控制策略将不适用于大容量的直接转矩控制,否则将造成比较高的开关频率。
在低速下,如果使用直接转矩进行控制,首先是采样周期很小,否则转矩脉动大,而且容易过流。其次是要求圆形磁链,否则转矩脉动大;再次是要使用单一电压矢量,并且占空比为100%,这样才能减少至少一半的开关频率;最后是转矩和磁链要有比较大的滞环,否则开关频率也比较高。
但是,如果转矩和磁链的滞环太大,又会造成比较大的转矩脉动。因此在大容量的调速中不易使用传统的直接转矩控制。目前使用的最成熟的方法是间接转矩控制,其控制结构如图7所示。
图7 间接转矩控制框图
由图7可以看出,这种控制方法其实是在A·B·Plunkett的直接转矩和磁链调节法上的一种改进,其中转矩调节器输出的是动态滑差在一个采用周期的积分动态增量ΔXd,而稳态滑差由磁链和转矩计算出来。动态滑差与电机机械角速度之和得到同步角速度,对其在一个采样周期进行积分就可以得到磁链在一个周期内的相位稳态增量ΔX0,使之与动态增量相加可得磁链在一个采样周期总的相位增量ΔX。磁链调节器输出幅值增量kψ,利用相位增量和幅值增量以及电压方程可以得到控制电机的空间电压矢量。
从以上分析可以看出间接转矩控制的物理概念是很清晰的。通过计算磁链的幅值增量和相位增量来决定空间电压矢量,不但可以保证磁链轨迹为圆形,而且还对转矩进行了稳态和动态的调节。另外,可以象矢量控制那样通过增大采样周期来减小开关频率而不会产生额外的转矩脉动,这主要是因为磁链的幅值增量和相位增量在一个采样周期中是可以准确计算出来的。因此间接转矩控制具有很好的稳态和动态性能,在大容量的调速中能大大减小低速转矩脉动,增大调速范围。
直接转矩控制是基于静止坐标系 下来进行控制的,如图1所示,在传统的直接转矩控制中,通过检测定子两相电流、直流母线电压和电机转速(在无速度传感器DTC中不需要测速)进行定子磁链观测和转矩计算,使二者分别与定子磁链给定和转矩给定相减,其差值又分别通过各自的滞环相比较,输出转矩和磁链的增、减信号,把这两个信号输入优化矢量开关表,再加上定子磁链所在的扇区就得到了满足磁链为圆形、转矩输出跟随转矩给定的电压矢量。磁链和转矩的滞环可以设置多级,并且其宽度可变,滞环宽度越小,开关频率越高,控制越精确。
直接转矩控制具有结构简单、转矩响应快以及对参数鲁棒性好等优点,但它却是建立在单一矢量、转矩和磁链滞环的Bang-Bang控制基础之上的控制方法,不可避免地造成了低速开关频率低、开关频率不固定以及转矩脉动大,限制了直接转矩控制在低速区的应用。
全部0条评论
快来发表一下你的评论吧 !