针对基于固定阶Markov链模型的方法不能充分利用不同阶次子序列结构特征的问题,提出一种基于多阶Markov模型的符号序列贝叶斯分类新方法。首先,建立了基于多阶次Markov模型的条件概率分布模型;其次,提出一种附后缀表的n一阶子序列后缀树结构和高效的树构造算法,该算法能够在扫描一遍序列集过程中建立多阶条件概率模型;最后,提出符号序列的贝叶斯分类器,其训练算法基于最大似然法学习不同阶次模型的权重,分类算法使用各阶次的加权条件概率进行贝叶斯分类预测。在三个应用领域实际序列集上进行了系列实验,结果表明:新分类器对模型阶数变化不敏感;与使用固定阶模型的支持向量机等现有方法相比,所提方法在基因序列与语音序列上可以取得40%以上的分类精度提升,且可输出符号序列Markov模型最优阶数参考值。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !