网络/协议
lwIP是瑞士计算机科学院(Swedish Institute of Computer Science)的Adam Dunkels等开发的一套用于嵌入式系统的开放源代码TCP/IP协议栈。Lwip既可以移植到操作系统上,又可以在无操作系统的情况下独立运行。
(1) 支持多网络接口下的IP转发
(2) 支持ICMP协议
(3) 包括实验性扩展的的UDP(用户数据报协议)
(4) 包括阻塞控制,RTT估算和快速恢复和快速转发的TCP(传输控制协议)
(5) 提供专门的内部回调接口(Raw API)用于提高应用程序性能
(6) 可选择的Berkeley接口API(多线程情况下)
(7) 在最新的版本中支持ppp
(8) 新版本中增加了的IP fragment的支持。
(9) 支持DHCP协议,动态分配ip地址。
sys_int必须在tcpip协议栈任务tcpip_thread创建前被调用。
#define MAX_QUEUES 20
#define MAX_QUEUE_ENTRIES 20
typedef struct {
OS_EVENT* pQ;//ucos中指向事件控制块的指针
void* pvQEntries[MAX_QUEUE_ENTRIES];//消息队列
//MAX_QUEUE_ENTRIES消息队列中最多消息数
} TQ_DESCR, *PQ_DESCR;
typedef PQ_DESCR sys_mbox_t;//可见lwip中的mbox其实是ucos的消息队列
static char pcQueueMemoryPool[MAX_QUEUES * sizeof(TQ_DESCR) ];
void sys_init(void)
{
u8_t i;
s8_t ucErr;
pQueueMem = OSMemCreate( (void*)pcQueueMemoryPool, MAX_QUEUES, sizeof(TQ_DESCR), &ucErr );//为消息队列创建内存分区
//init lwip task prio offset
curr_prio_offset = 0;
//init lwip_timeouts for every lwip task
//初始化lwip定时事件表,具体实现参考下面章节
for(i=0;i《LWIP_TASK_MAX;i++){
lwip_timeouts[i].next = NULL;
}
}
lwip中的进程就是ucos中的任务,创建一个新进程的代码如下:
#define LWIP_STK_SIZE 10*1024//和tcp/ip相关任务的堆栈大小。可以根据情况自
//己设置,44b0开发板上有8M的sdram,所以设大
//一点也没有关系:)
//max number of lwip tasks
#define LWIP_TASK_MAX 5 //和tcp/ip相关的任务最多数目
//first prio of lwip tasks
#define LWIP_START_PRIO 5 //和tcp/ip相关任务的起始优先级,在本例中优先级可
//以从(5-9)。注意tcpip_thread在所有tcp/ip相关进程中//应该是优先级最高的。在本例中就是优先级5
//如果用户需要创建和tcp/ip无关任务,如uart任务等,
//不要使用5-9的优先级
OS_STK LWIP_TASK_STK[LWIP_TASK_MAX][LWIP_STK_SIZE];//和tcp/ip相关进程
//的堆栈区
u8_t curr_prio_offset ;
sys_thread_t sys_thread_new(void (* function)(void *arg), void *arg,int prio)
{
if(curr_prio_offset 《 LWIP_TASK_MAX){
OSTaskCreate(function,(void*)0x1111, &LWIP_TASK_STK[curr_prio_offset][LWIP_STK_SIZE-1],
LWIP_START_PRIO+curr_prio_offset );
curr_prio_offset++;
return 1;
} else {
// PRINT(“ lwip task prio out of range ! error! ”);
}
}
从代码中可以看出tcpip_thread应该是最先创建的。
在tcp/ip协议中很多时候都要用到定时,定时的实现也是tcp/ip协议栈中一个重要的部分.lwip中定时事件的数据结构如下。
struct sys_timeout {
struct sys_timeout *next;//指向下一个定时结构
u32_t time;//定时时间
sys_timeout_handler h;//定时时间到后执行的函数
void *arg;//定时时间到后执行函数的参数。
};
struct sys_timeouts {
struct sys_timeout *next;
};
struct sys_timeouts lwip_timeouts[LWIP_TASK_MAX];
Lwip中的定时事件表的结构如下图,每个和tcp/ip相关的任务的一系列定时事件组成一个单向链表。每个链表的起始指针存在lwip_timeouts的对应表项中。
函数sys_arch_timeouts返回对应于当前任务的指向定时事件链表的起始指针。该指针存在lwip_timeouts[MAX_LWIP_TASKS]中。
struct sys_timeouts null_timeouts;
struct sys_timeouts * sys_arch_timeouts(void)
{
u8_t curr_prio;
s16_t err,offset;
OS_TCB curr_task_pcb;
null_timeouts.next = NULL;
//获取当前任务的优先级
err = OSTaskQuery(OS_PRIO_SELF,&curr_task_pcb);
curr_prio = curr_task_pcb.OSTCBPrio;
offset = curr_prio - LWIP_START_PRIO;
//判断当前任务优先级是不是tcp/ip相关任务,优先级5-9
if(offset 《 0 || offset 》= LWIP_TASK_MAX)
{
return &null_timeouts;
}
return &lwip_timeouts[offset];
}
注意:杨晔大侠移植的代码在本函数有一个bug.杨晔大侠的移植把上面函数中的OS_TCB curr_task_tcb定义成了全局变量,使本函数成为了一个不可重入函数。我也是在进行如下测试时发现了这个bug.我的开发板上设置的ip地址是192.168.1.95.我在windows的dos窗口内运行
ping 192.168.1.95 –l 2000 –t,不间断用长度为2000的数据报进行ping测试,同时使用tftp客户端软件给192.168.1.95下载一个十几兆程序,同时再使用telnet连接192.168.1.95端口7(echo端口),往该端口写数测试echo功能。
在运行一段时间以后,开发板进入不再响应。我当时也是经过长时间的分析才发现是因为在低优先级任务运行ys_arch_timeouts()时被高优先级任务打断改写了curr_task_tcb的值,从而使sys_arch_timeouts返回的指针错误,进而导致系统死锁。函数sys_timeout给当前任务增加一个定时事件:
void sys_timeout(u32_t msecs, sys_timeout_handler h, void *arg)
{
struct sys_timeouts *timeouts;
struct sys_timeout *timeout, *t;
timeout = memp_malloc(MEMP_SYS_TIMEOUT);//为定时事件分配内存
if (timeout == NULL) {
return;
}
timeout-》next = NULL;
timeout-》h = h;
timeout-》arg = arg;
timeout-》time = msecs;
timeouts = sys_arch_timeouts();//返回当前任务定时事件链表起始指针
if (timeouts-》next == NULL) {//如果链表为空直接增加该定时事件
timeouts-》next = timeout;
return;
}
//如果链表不为空,对定时事件进行排序。注意定时事件中的time存储的是本事件
//时间相对于前一事件的时间的差值
if (timeouts-》next-》time 》 msecs) {
timeouts-》next-》time -= msecs;
timeout-》next = timeouts-》next;
timeouts-》next = timeout;
} else {
for(t = timeouts-》next; t != NULL; t = t-》next) {
timeout-》time -= t-》time;
if (t-》next == NULL ||
t-》next-》time 》 timeout-》time) {
if (t-》next != NULL) {
t-》next-》time -= timeout-》time;
}
timeout-》next = t-》next;
t-》next = timeout;
break;
}
}
}
}
函数sys_untimeout从当前任务定时事件链表中删除一个定时事件
void sys_untimeout(sys_timeout_handler h, void *arg)
{
struct sys_timeouts *timeouts;
struct sys_timeout *prev_t, *t;
timeouts = sys_arch_timeouts();//返回当前任务定时事件链表起始指针
if (timeouts-》next == NULL)//如果链表为空直接返回
{
return;
}
//查找对应定时事件并从链表中删除。
for (t = timeouts-》next, prev_t = NULL; t != NULL; prev_t = t, t = t-》next)
{
if ((t-》h == h) && (t-》arg == arg))
{
/* We have a match */
/* Unlink from previous in list */
if (prev_t == NULL)
timeouts-》next = t-》next;
else
prev_t-》next = t-》next;
/* If not the last one, add time of this one back to next */
if (t-》next != NULL)
t-》next-》time += t-》time;
memp_free(MEMP_SYS_TIMEOUT, t);
return;
}
}
return;
}
2.2.3 “mbox”的实现:
(1)mbox的创建
sys_mbox_t sys_mbox_new(void)
{
u8_t ucErr;
PQ_DESCR pQDesc;
//从消息队列内存分区中得到一个内存块
pQDesc = OSMemGet( pQueueMem, &ucErr );
if( ucErr == OS_NO_ERR ) {
//创建一个消息队列
pQDesc-》pQ=OSQCreate(&(pQDesc-》pvQEntries[0]), MAX_QUEUE_ENTRIES );
if( pQDesc-》pQ != NULL ) {
return pQDesc;
}
}
return SYS_MBOX_NULL;
}
(2)发一条消息给”mbox”
const void * const pvNullPointer = 0xffffffff;
void sys_mbox_post(sys_mbox_t mbox, void *data)
{
INT8U err;
if( !data )
data = (void*)&pvNullPointer;
err= OSQPost( mbox-》pQ, data);
}
在ucos中,如果OSQPost (OS_EVENT *pevent, void *msg)中的msg==NULL 会返回一条OS_ERR_POST_NULL_PTR错误。而在lwip中会调用sys_mbox_post(mbox,NULL)发送一条空消息,我们在本函数中把NULL变成一个常量指针0xffffffff.
(3)从”mbox”中读取一条消息
#define SYS_ARCH_TIMEOUT 0xffffffff
void sys_mbox_fetch(sys_mbox_t mbox, void **msg)
{
u32_t time;
struct sys_timeouts *timeouts;
struct sys_timeout *tmptimeout;
sys_timeout_handler h;
void *arg;
again:
timeouts = sys_arch_timeouts();////返回当前任务定时事件链表起始指针
if (!timeouts || !timeouts-》next) {//如果定时事件链表为空
sys_arch_mbox_fetch(mbox, msg, 0);//无超时等待消息
} else {
if (timeouts-》next-》time 》 0) {
//如果超时事件链表不为空,而且第一个超时事件的time !=0
//带超时等待消息队列,超时时间等于超时事件链表中第一个超时事件的time,
time = sys_arch_mbox_fetch(mbox, msg, timeouts-》next-》time);
//在后面分析中可以看到sys_arch_mbox_fetch调用了ucos中的OSQPend系统调
//用从消息队列中读取消息。
//如果”mbox”消息队列不为空,任务立刻返回,否则任务进入阻塞态。
//需要重点说明的是sys_arch_mbox_fetch的返回值time:如果sys_arch_mbox_fetch
//因为超时返回,time=SYS_ARCH_TIMEOUT,
//如果sys_arch_mbox_fetch因为收到消息而返回,
//time = 收到消息时刻的时间-执行sys_arch_mbox_fetch时刻的时间,单位是毫秒
//由于在ucos中任务调用OSQPend系统调用进入阻塞态,到收到消息重新开始执行
//这段时间没有记录下来,所以我们要简单修改ucos的源代码。(后面我们会看到)。
} else {
//如果定时事件链表不为空,而且第一个定时事件的time ==0,表示该事件的定时
//时间到
time = SYS_ARCH_TIMEOUT;
}
if (time == SYS_ARCH_TIMEOUT) {
//一个定时事件的定时时间到
tmptimeout = timeouts-》next;
timeouts-》next = tmptimeout-》next;
h = tmptimeout-》h;
arg = tmptimeout-》arg;
memp_free(MEMP_SYS_TIMEOUT, tmptimeout);
//从内存中释放该定时事件,并执行该定时事件中的函数
if (h != NULL) {
h(arg);
}
//因为定时事件中的定时时间到或者是因为sys_arch_mbo_fetch超时到而执行到
//这里,返回本函数开头重新等待mbox的消息
goto again;
} else {
//如果sys_arch_mbox_fetch无超时收到消息返回
//则刷新定时事件链表中定时事件的time值。
if (time 《= timeouts-》next-》time) {
timeouts-》next-》time -= time;
} else {
timeouts-》next-》time = 0;
}
}
}
}
u32_t sys_arch_mbox_fetch(sys_mbox_t mbox, void **data, u32_t timeout)
{
u32_t ucErr;
u16_t ucos_timeout;
//在 lwip中 ,timeout的单位是ms
// 在ucosII ,timeout 的单位是timer tick
ucos_timeout = 0;
if(timeout != 0){
ucos_timeout = (timeout )*( OS_TICKS_PER_SEC/1000);
if(ucos_timeout 《 1)
ucos_timeout = 1;
else if(ucos_timeout 》 65535)
ucos_timeout = 65535;
}
//如果data!=NULL就返回消息指针,
if(data != NULL){
*data = OSQPend( mbox-》pQ, (u16_t)ucos_timeout, &ucErr );
}else{
OSQPend(mbox-》pQ,(u16_t)ucos_timeout,&ucErr);
}
//这里修改了ucos中的OSQPend系统调用,
//原来的void *OSQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err)
// err的返回值只有两种:收到消息就返回OS_NO_ERR,超时则返回OS_TIMEOUT
//这里先将err从8位数据改变成了16位数据 OSQPend(*pevent,timeout, INT16U *err)
//重新定义了OS_TIMEOUT
//在ucos中原有#define OS_TIMEOUT 20
//改为 #define OS_TIMEOUT -1
//err返回值的意义也改变了,如果超时返回OS_TIMEOUT
// 如果收到消息,则返回OSTCBCur-》OSTCBDly修改部分代码如下
//if (msg != (void *)0) { /* Did we get a message? */
// OSTCBCur-》OSTCBMsg = (void *)0;
// OSTCBCur-》OSTCBStat = OS_STAT_RDY;
// OSTCBCur-》OSTCBEventPtr = (OS_EVENT *)0;
// *err = OSTCBCur-》OSTCBDly;// zhangzs @2003.12.12
// OS_EXIT_CRITICAL();
// return (msg); /* Return message received */
// }
//关于ucos的OSTBCur-》OSTCBDly的含义请查阅ucos的书籍
if( ucErr == OS_TIMEOUT ) {
timeout = SYS_ARCH_TIMEOUT;
} else {
if(*data == (void*)&pvNullPointer )
*data = NULL;
//单位转换,从ucos tick-》ms
timeout = (ucos_timeout -ucErr)*(1000/ OS_TICKS_PER_SEC);
}
return timeout;
}
semaphone的实现和mbox类似,这里就不再重复了.
平台是LPC2136+ENC28J60,32K的RAM,软件是uCOS-II 2.51+LwIP 1.1.1。
感觉主要解决两个问题:
操作系统仿真层的移植。这个基于uCOS-II的代码太多了。COPY下就行!
驱动的移植主要就是完成ethernetif.c的工作。作者已经给好了驱动的接口。
struct netif {
struct netif *next;
struct ip_addr ip_addr;
struct ip_addr netmask;
struct ip_addr gw;
err_t (* input)(struct pbuf *p, struct netif *inp);
err_t (* output)(struct netif *netif, struct pbuf *p,
struct ip_addr *ipaddr);
err_t (* linkoutput)(struct netif *netif, struct pbuf *p);
void *state;
#if LWIP_DHCP
struct dhcp *dhcp;
#endif
unsigned char hwaddr_len;
unsigned char hwaddr[NETIF_MAX_HWADDR_LEN];
u16_t mtu;
char name[2];
u8_t num;
u8_t flags;
};
主要就是:
err_t (* input)(struct pbuf *p, struct netif *inp);
这个是被驱动调用的,传递一个数据包给TCP/IP栈。
err_t (* output)(struct netif *netif, struct pbuf *p,struct ip_addr *ipaddr);
这个是被IP模块调用的,向以太网上发送一个数据包,函数要先通过IP地址获得解决硬件地址,然后发包。
err_t (* linkoutput)(struct netif *netif, struct pbuf *p);
这个是直接发送数据包的接口。
相应的作者在ethernetif.c里面给了几个函数框架,这个文件相当于一个硬件抽象层。
static void low_level_init(struct netif *netif)
网卡初始化函数
static err_t low_level_output(struct netif *netif, struct pbuf *p)
链路层发送函数,实现err_t (* linkoutput)接口。
static struct pbuf *low_level_input(struct netif *netif)
得到一整帧数据
static err_t ethernetif_output(struct netif *netif, struct pbuf *p,struct ip_addr *ipaddr)
实现发送线程,实现err_t (* output)接口。
static void ethernetif_input(struct netif *netif)
实现接收线程,识别数据包是ARP包还是IP包
err_t ethernetif_init(struct netif *netif)
初始化底层接口,给作者给好了驱动的接口赋值啊啥的。
其实,写驱动的时候只要自己再建个ethernet.c,实际的网络硬件控制的文件
然后提供几个函数
比如:
void EMACInit( void )
硬件的初始化
void EMACPacketSend ( u8_t *buffer, u16_t length )
用来将buffer里面的包复制到网络设备的发送缓冲里面,发送。
u16_t EMACPacketReceive ( u8_t *buffer, u16_t max_length )
用来将网络设备的接收缓冲里面的包数据复制到buffer里面。
u16_t EMACPacketLength ( u16_t max_length )
获得包长度
还有其他控制类函数。
最后,用ethernet.c里的函数完成ethernetif.c里的框架。这样脉络可能会清楚一点。
(1).lwip提供三种API:1)RAW API 2)lwip API 3)BSD API。
对于多任务系统而言,因为lwip采用的是将TCP/IP协议放在一个单独的线程里面,所以那个线程是tcpip_thread。采用RAW API回调技术,就得把应用层程序写在tcpip_thread这个线程里面,作为同一个任务运行。
而采用lwip API,就可以将TCP/IP协议和应用层程序放在不同的任务里面,通过调api_lib.c提供的函数,编写相应的应用层代码。好象一般都会采用这种方式。
BSD API就是那sockets.c里面的,没用过。
(2)任务间是如何调度的
从底层到应用层,一般将底层数据接收做为一个线程,可以建个任务也可以直接在中断里解决。
然后tcpip_thread是一个线程,最后是应用层一个线程。
底层的邮箱投递活动是通过调用tcpip.c里的tcpip_input。这个函数向tcpip_thread投递消息。高层的投递应该是通过tcpip_apimsg。
遇到的问题:
一开始移植的时候,驱动写好的,能PING通,但TCP的任务没反应,这个我那问题是lwip协议栈的问题,换个版本的协议栈就搞定了,网上吧,下的协议栈,有的是有问题的。
全部0条评论
快来发表一下你的评论吧 !