电子常识
OFDM是 Orthogonal Frequency Division Multiplexing的缩写,即正交频分复用,是一种无线环境下的高速传输技术,也可以看作一种特殊的FDM形式。OFDM 技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。
对于移动通信,其信道的频率响应曲线大多是非平坦的,具有频率选择性,但是每个子信道而言又是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于这种技术具有在杂波干扰下传送信号的能力,因此常常会被利用在容易外界干扰或者抵抗外界千扰能力较差的传输介质中。
通常的数字调制都是在单个载波上进行,如PSK、QAM等。这种单载波的调制方法易发生码间干扰而增加误码率,而且在多径传播的环境中因受瑞利衰落的影响而会造成突发误码。若将高速率的串行数据转换为若干低速率数据流,每个低速数据流对应一个载波进行调制,组成一个多载波的同时调制的并行传输系统。这样将总的信号带宽划分为N个互不重叠的子通道(频带小于Δf),N个子通道进行正交频分多重调制,就可克服上述单载波串行数据系统的缺陷。
在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM, W-OFDM, F-OFDM, MIMO-OFDM,多带-OFDM。
OFDM中的各个载波是相互正交的,每个载波在一个符号时间内有整数个载波周期,每个载波的频谱零点和相邻载波的零点重叠,这样便减小了载波间的干扰。由于载波间有部分重叠,所以它比传统的FDMA提高了频带利用率。
在OFDM传播过程中,高速信息数据流通过串并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。在过去的频分复用(FDM)系统中,整个带宽分成N个子频带,子频带之间不重叠,为了避免子频带间相互干扰,频带间通常加保护带宽,但这会使频谱利用率下降。为了克服这个缺点,OFDM采用N个重叠的子频带,子频带间正交,因而在接收端无需分离频谱就可将信号接收下来。
OFDM系统的一个主要优点是正交的子载波可以利用快速傅利叶变换(FFT/IFFT)实现调制和解调。对于N点的IFFT运算,需要实施N^2次复数乘法,而采用常见的基于2的IFFT算法,其复数乘法仅为(N/2)log2N,可显著降低运算复杂度。
在OFDM系统的发射端加入保护间隔,主要是为了消除多径所造成的ISI。其方法是在OFDM符号保护间隔内填入循环前缀,以保证在FFT周期内OFDM符号的时延副本内包含的波形周期个数也是整数。这样时延小于保护间隔的信号就不会在解调过程中产生ISI。由于OFDM技术有较强的抗ISI能力以及高频谱效率,2001年开始应用于光通信中,相当多的研究表明了该技术在光通信中的可行性。
OFDM把用户信息通过多个子载波传输,在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,使OFDM对脉冲噪声(ImpulseNoise)和信道快衰落的抵抗力更强。同时,通过子载波的联合编码,达到了子信道间的频率分集的作用,也增强了对脉冲噪声和信道快衰落的抵抗力。因此,如果衰落不是特别严重,就没有必要再添加时域均衡器。
OFDM允许重叠的正交子载波作为子信道,而不是传统的利用保护频带分离子信道的方式,提高了频率利用效率。
OFDM自适应调制机制使不同的子载波可以按照信道情况和噪音背景的不同使用不同的调制方式。当信道条件好的时候,采用效率高的调制方式。当信道条件差的时候,采用抗干扰能力强的调制方式。再有,OFDM加载算法的采用,使系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,OFDM技术非常适合高速数据传输。
码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性的干扰。造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。OFDM由于采用了循环前缀,对抗码间干扰的能力很强。
OFDM技术区分各个子信道的方法是利用各个子载波之间严格的正交性。频偏和相位噪声会使各个子载波之间的正交特性恶化,仅仅1%的频偏就会使信噪比下降30dB。因此,OFDM系统对频偏和相位噪声比较敏感。
与单载波系统相比,由于OFDM信号是由多个独立的经过调制的子载波信号相加而成的,这样的合成信号就有可能产生比较大的峰值功率,也就会带来较大的峰值均值功率比,简称峰均值比。对于包含N个子信道的OFDM系统来说,当N个子信道都以相同的相位求和时,所得到的峰值功率就是均值功率的N倍。当然这是一种非常极端的情况,通常OFDM系统内的峰均值不会达到这样高的程度。高峰均值比会增大对射频放大器的要求,导致射频信号放大器的功率效率降低。
负载算法和自适应调制技术的使用会增加发射机和接收机的复杂度,并且当终端移动速度每小时高于30公里时,自适应调制技术就不是很适合了。
在通信系统中,例如我们用手机打电话的时候,通话数据被采样后,会形成D0、D1、D2、D3、D4、D5……这样连续的数据流。
FDM就是把这个序列中的元素依次地调制到指定的频率后发送出去。
OFDM就是先把序列划分为D0、D4、D8……D1、D5、D9……D2、D6、D10……D3、D7、D11……这样4个子序列(此处子序列个数仅为举例,不代表实际个数),然后将第一个子序列的元素依次调制到频率F1上并发送出去,第二个子序列的元素依次调制到频率F2上并发送出去,第三个子序列的元素依次调制到频率F3上并发送出去,第四个子序列的元素依次调制到频率F4上并发送出去。F1、F2、F3、F4这四个频率满足两两正交的关系,如下图所示。
在一个世纪以前,人们就在一个宽带信道中,利用多个不同的载波频率来传输许多低速率的信号(如电报信号)。但是在这种情况下,载波频率之间要相隔足够远,还需要一些保护频带,以确保载波频谱不重叠。因此该系统的频谱效率很低。于是在1957年Doelz等提出了一种各个载波频率在一个符号周期内正交的FDM技术,它允许载波频谱重叠,大大提高了系统的频谱利用率。在1966年,Chang等提出了利用滤波和限制带宽来保证子载波间的正交性。这种方法来保持OFDM子载波的正交性,实现起来结构非常复杂,随着子载波数的增加,复杂度也不断增加,使其没有受到足够重视,从而也限制了该技术的进一步推广。直到1971年,Weinstein等人提出了基于离散傅立叶变换(DFT)的频域数据传输,大大简化了系统结构,使得OFDM技术真正被重视起来。之后,围绕OFDM技术的研究也相应展开。80年代,人们研究了如何将OFDM技术应用于高速MODEM。到90年代,OFDM技术的研究深入到无线调频信道上的宽带数据传输。
而今,以OFDM技术为核心的各项标准也己制定,如欧洲1997年提出的数字视频地面广播(DVB-T)以及IEEE802.11标准系列,日本1999年提出的地面综合业务数字广播ISDB-T等等。并且OFDM技术在这些标准的前提下,也被广泛应用于高速宽带数字通信系统,如非对称的数字用户环路(ADSL), ETSI标准的数字音频广播(DAB)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)等。
由于人们对通信数据化、宽带化、个人化和移动化的迫切需求,OFDM 技术在综合无线接入领域将越来越得到广泛的应用。随着DSP芯片技术的发展,傅立叶变换/反变换、高速Modem采用的64/128/256QAM技术、栅格编码技术、软判决技术、信道自适应技术、插入保护时段、减少均衡计算量等成熟技术的逐步引入,人们已开始集中越来越多的精力开发OFDM技术在移动通信领域的应用。预计第三代以后的移动通信的主流技术将是OFDM技术。
全部0条评论
快来发表一下你的评论吧 !